19,500 research outputs found

    Ihara zeta functions for periodic simple graphs

    Full text link
    The definition and main properties of the Ihara zeta function for graphs are reviewed, focusing mainly on the case of periodic simple graphs. Moreover, we give a new proof of the associated determinant formula, based on the treatment developed by Stark and Terras for finite graphs.Comment: 17 pages, 7 figures. V3: minor correction

    Ihara's zeta function for periodic graphs and its approximation in the amenable case

    Get PDF
    In this paper, we give a more direct proof of the results by Clair and Mokhtari-Sharghi on the zeta functions of periodic graphs. In particular, using appropriate operator-algebraic techniques, we establish a determinant formula in this context and examine its consequences for the Ihara zeta function. Moreover, we answer in the affirmative one of the questions raised by Grigorchuk and Zuk. Accordingly, we show that the zeta function of a periodic graph with an amenable group action is the limit of the zeta functions of a suitable sequence of finite subgraphs.Comment: 21 pages, 4 figure

    Zeta functions for infinite graphs and functional equations

    Get PDF
    The definitions and main properties of the Ihara and Bartholdi zeta functions for infinite graphs are reviewed. The general question of the validity of a functional equation is discussed, and various possible solutions are proposed.Comment: 23 pages, 3 figures. Accepted for publication in "Fractals in Applied Mathematics", Contemporary Mathematics, Editors Carfi, Lapidus, Pearse, van Frankenhuijse

    Comparability in the graph monoid

    Full text link
    Let Γ\Gamma be the infinite cyclic group on a generator x.x. To avoid confusion when working with Z\mathbb Z-modules which also have an additional Z\mathbb Z-action, we consider the Z\mathbb Z-action to be a Γ\Gamma-action instead. Starting from a directed graph EE, one can define a cancellative commutative monoid MEΓM_E^\Gamma with a Γ\Gamma-action which agrees with the monoid structure and a natural order. The order and the action enable one to label each nonzero element as being exactly one of the following: comparable (periodic or aperiodic) or incomparable. We comprehensively pair up these element features with the graph-theoretic properties of the generators of the element. We also characterize graphs such that every element of MEΓM_E^\Gamma is comparable, periodic, graphs such that every nonzero element of MEΓM_E^\Gamma is aperiodic, incomparable, graphs such that no nonzero element of MEΓM_E^\Gamma is periodic, and graphs such that no element of MEΓM_E^\Gamma is aperiodic. The Graded Classification Conjecture can be formulated to state that MEΓM_E^\Gamma is a complete invariant of the Leavitt path algebra LK(E)L_K(E) of EE over a field K.K. Our characterizations indicate that the Graded Classification Conjecture may have a positive answer since the properties of EE are well reflected by the structure of MEΓ.M_E^\Gamma. Our work also implies that some results of [R. Hazrat, H. Li, The talented monoid of a Leavitt path algebra, J. Algebra, 547 (2020) 430-455] hold without requiring the graph to be row-finite.Comment: This version contains some modifications based on the input of a referee for the New York Journal of Mathematic

    Random subshifts of finite type

    Full text link
    Let XX be an irreducible shift of finite type (SFT) of positive entropy, and let Bn(X)B_n(X) be its set of words of length nn. Define a random subset ω\omega of Bn(X)B_n(X) by independently choosing each word from Bn(X)B_n(X) with some probability α\alpha. Let XωX_{\omega} be the (random) SFT built from the set ω\omega. For each 0≤α≤10\leq \alpha \leq1 and nn tending to infinity, we compute the limit of the likelihood that XωX_{\omega} is empty, as well as the limiting distribution of entropy for XωX_{\omega}. For α\alpha near 1 and nn tending to infinity, we show that the likelihood that XωX_{\omega} contains a unique irreducible component of positive entropy converges exponentially to 1. These results are obtained by studying certain sequences of random directed graphs. This version of "random SFT" differs significantly from a previous notion by the same name, which has appeared in the context of random dynamical systems and bundled dynamical systems.Comment: Published in at http://dx.doi.org/10.1214/10-AOP636 the Annals of Probability (http://www.imstat.org/aop/) by the Institute of Mathematical Statistics (http://www.imstat.org
    • …
    corecore