14,019 research outputs found

    Exploring the impact of data poisoning attacks on machine learning model reliability

    Get PDF
    Recent years have seen the widespread adoption of Artificial Intelligence techniques in several domains, including healthcare, justice, assisted driving and Natural Language Processing (NLP) based applications (e.g., the Fake News detection). Those mentioned are just a few examples of some domains that are particularly critical and sensitive to the reliability of the adopted machine learning systems. Therefore, several Artificial Intelligence approaches were adopted as support to realize easy and reliable solutions aimed at improving the early diagnosis, personalized treatment, remote patient monitoring and better decision-making with a consequent reduction of healthcare costs. Recent studies have shown that these techniques are venerable to attacks by adversaries at phases of artificial intelligence. Poisoned data set are the most common attack to the reliability of Artificial Intelligence approaches. Noise, for example, can have a significant impact on the overall performance of a machine learning model. This study discusses the strength of impact of noise on classification algorithms. In detail, the reliability of several machine learning techniques to distinguish correctly pathological and healthy voices by analysing poisoning data was evaluated. Voice samples selected by available database, widely used in research sector, the Saarbruecken Voice Database, were processed and analysed to evaluate the resilience and classification accuracy of these techniques. All analyses are evaluated in terms of accuracy, specificity, sensitivity, F1-score and ROC area

    Fog Computing in Medical Internet-of-Things: Architecture, Implementation, and Applications

    Full text link
    In the era when the market segment of Internet of Things (IoT) tops the chart in various business reports, it is apparently envisioned that the field of medicine expects to gain a large benefit from the explosion of wearables and internet-connected sensors that surround us to acquire and communicate unprecedented data on symptoms, medication, food intake, and daily-life activities impacting one's health and wellness. However, IoT-driven healthcare would have to overcome many barriers, such as: 1) There is an increasing demand for data storage on cloud servers where the analysis of the medical big data becomes increasingly complex, 2) The data, when communicated, are vulnerable to security and privacy issues, 3) The communication of the continuously collected data is not only costly but also energy hungry, 4) Operating and maintaining the sensors directly from the cloud servers are non-trial tasks. This book chapter defined Fog Computing in the context of medical IoT. Conceptually, Fog Computing is a service-oriented intermediate layer in IoT, providing the interfaces between the sensors and cloud servers for facilitating connectivity, data transfer, and queryable local database. The centerpiece of Fog computing is a low-power, intelligent, wireless, embedded computing node that carries out signal conditioning and data analytics on raw data collected from wearables or other medical sensors and offers efficient means to serve telehealth interventions. We implemented and tested an fog computing system using the Intel Edison and Raspberry Pi that allows acquisition, computing, storage and communication of the various medical data such as pathological speech data of individuals with speech disorders, Phonocardiogram (PCG) signal for heart rate estimation, and Electrocardiogram (ECG)-based Q, R, S detection.Comment: 29 pages, 30 figures, 5 tables. Keywords: Big Data, Body Area Network, Body Sensor Network, Edge Computing, Fog Computing, Medical Cyberphysical Systems, Medical Internet-of-Things, Telecare, Tele-treatment, Wearable Devices, Chapter in Handbook of Large-Scale Distributed Computing in Smart Healthcare (2017), Springe

    Combining phonological and acoustic ASR-free features for pathological speech intelligibility assessment

    Get PDF
    Intelligibility is widely used to measure the severity of articulatory problems in pathological speech. Recently, a number of automatic intelligibility assessment tools have been developed. Most of them use automatic speech recognizers (ASR) to compare the patient's utterance with the target text. These methods are bound to one language and tend to be less accurate when speakers hesitate or make reading errors. To circumvent these problems, two different ASR-free methods were developed over the last few years, only making use of the acoustic or phonological properties of the utterance. In this paper, we demonstrate that these ASR-free techniques are also able to predict intelligibility in other languages. Moreover, they show to be complementary, resulting in even better intelligibility predictions when both methods are combined

    Articulatory and bottleneck features for speaker-independent ASR of dysarthric speech

    Full text link
    The rapid population aging has stimulated the development of assistive devices that provide personalized medical support to the needies suffering from various etiologies. One prominent clinical application is a computer-assisted speech training system which enables personalized speech therapy to patients impaired by communicative disorders in the patient's home environment. Such a system relies on the robust automatic speech recognition (ASR) technology to be able to provide accurate articulation feedback. With the long-term aim of developing off-the-shelf ASR systems that can be incorporated in clinical context without prior speaker information, we compare the ASR performance of speaker-independent bottleneck and articulatory features on dysarthric speech used in conjunction with dedicated neural network-based acoustic models that have been shown to be robust against spectrotemporal deviations. We report ASR performance of these systems on two dysarthric speech datasets of different characteristics to quantify the achieved performance gains. Despite the remaining performance gap between the dysarthric and normal speech, significant improvements have been reported on both datasets using speaker-independent ASR architectures.Comment: to appear in Computer Speech & Language - https://doi.org/10.1016/j.csl.2019.05.002 - arXiv admin note: substantial text overlap with arXiv:1807.1094
    corecore