26 research outputs found

    Resilient virtual topologies in optical networks and clouds

    Get PDF
    Optical networks play a crucial role in the development of Internet by providing a high speed infrastructure to cope with the rapid expansion of high bandwidth demand applications such as video, HDTV, teleconferencing, cloud computing, and so on. Network virtualization has been proposed as a key enabler for the next generation networks and the future Internet because it allows diversification the underlying architecture of Internet and lets multiple heterogeneous network architectures coexist. Physical network failures often come from natural disasters or human errors, and thus cannot be fully avoided. Today, with the increase of network traffic and the popularity of virtualization and cloud computing, due to the sharing nature of network virtualization, one single failure in the underlying physical network can affect thousands of customers and cost millions of dollars in revenue. Providing resilience for virtual network topology over optical network infrastructure thus becomes of prime importance. This thesis focuses on resilient virtual topologies in optical networks and cloud computing. We aim at finding more scalable models to solve the problem of designing survivable logical topologies for more realistic and meaningful network instances while meeting the requirements on bandwidth, security, as well as other quality of service such as recovery time. To address the scalability issue, we present a model based on a column generation decomposition. We apply the cutset theorem with a decomposition framework and lazy constraints. We are able to solve for much larger network instances than the ones in literature. We extend the model to address the survivability problem in the context of optical networks where the characteristics of optical networks such as lightpaths and wavelength continuity and traffic grooming are taken into account. We analyze and compare the bandwidth requirement between the two main approaches in providing resiliency for logical topologies. In the first approach, called optical protection, the resilient mechanism is provided by the optical layer. In the second one, called logical restoration, the resilient mechanism is done at the virtual layer. Next, we extend the survivability problem into the context of cloud computing where the major complexity arises from the anycast principle. We are able to solve the problem for much larger network instances than in the previous studies. Moreover, our model is more comprehensive that takes into account other QoS criteria, such that recovery time and delay requirement

    LOGICAL TOPOLOGY DESIGN FOR SURVIVABILITY IN IP-OVER-WDM NETWORKS

    Get PDF
    IP-over-WDM networks integrate Wavelength Division Multiplexing (WDM) technology with Internet Protocol (IP) and are widely regarded as the architecture for the next generation high-speed Internet. The problem of designing an IP-over-WDM network can be modeled as an embedding problem in which an IP network is embedded in a WDM network by establishing all optical paths between IP routers in the WDM network. Survivability is considered a vital requirement in such networks, which can be achieved by embedding the IP network in the WDM network in such a way that the IP network stays connected in the presence of failure or failures in the WDM network. Otherwise, some of the IP routers may not be reachable.The problem can be formulated as an Integer Linear Program (ILP), which can be solved optimally but is NP-complete. In this thesis, we have studied and proposed various efficient algorithms that can be used to make IP-over-WDM networks survivable in the presence of a single WDM link (optical fiber cable or cables) failure.First we evaluate an existing approach, named Survivable Mapping Algorithm by Ring Trimming (SMART), which provides survivability for an entire network by successively considering pieces of the network. The evaluation provides much insight into the approach, which allowed us to propose several enhancements. The modified approach with enhancements leads to better performance than the original SMART.We have also proposed a hybrid algorithm that guarantees survivability, if the IP and the WDM networks are at least 2-edge connected. The algorithm uses a combination of proactive (protection) and reactive (restoration) mechanisms to obtain a survivable embedding for any given IP network in any given WDM network.Circuits and cutsets are dual concepts. SMART approach is based on circuits. The question then arises whether there exists a dual methodology based on cutsets. We investigate this question and provide much needed insight. We provide a unified algorithmic framework based on circuits and cutsets. We also provide new methodologies based on cutsets and give a new proof of correctnessof SMART. We also develop a method based on incidence sets that are a special case of cutsets. Noting that for some IP networks a survivable embedding may not exist, the option of adding new IP links is pursued. Comparative evaluations of all the algorithms through extensive simulations are also given in this dissertation

    Survivable Logical Topology Mapping under Multiple Constraints in IP-over-WDM Networks

    Get PDF
    The survivable logical topology mapping problem in an IP-over-WDM network deals with the cascading effect of link failures from the bottom (physical) layer to the upper (logical) layer. Multiple logical links may get disconnected due to a single physical link failure, which may cause the disconnection of the logical network. Here we study survivability issues in IP-over-WDM networks with respect to various criteria.We first give an overview of the two major lines of pioneering works for the survivable design problem. Though theoretically elegant, the first approach which uses Integer Linear Programming (ILP) formulations suffers from the drawback of scalability. The second approach, the structural approach, utilizes the concept of duality between circuits and cutsets in a graph and is based on an algorithmic framework called Survivable Mapping Algorithm by Ring Trimming (SMART). Several SMART-based algorithms have been proposed in the literature.In order to generate the survivable routing, the SMART-based algorithms require the existence of disjoint lightpaths for certain groups of logical links in the physical topology, which might not always exist. Therefore, we propose in Chapter 4 an approach to augment the logical topology with new logical links to guarantee survivability. We first identify a logical topology that admits a survivable mapping against one physical link failure. We then generalize these results to achieve augmentation of a given logical topology to survive multiple physical link failures.We propose in Chapter 5 a generalized version of SMART-based algorithms and introduce the concept of robustness of an algorithm which captures the ability of the algorithm to provide survivability against multiple physical link failures. We demonstrate that even when a SMART-based algorithm cannot be guaranteed to provide survivability against multiple physical link failures, its robustness could be very high.Most previous works on the survivable logical topology design problem in IP-over-WDM networks did not consider physical capacities and logical demands. In Chapter 6, we study this problem taking into account logical link demands and physical link capacities. We define weak survivability and strong survivability in capacitated IP-over-WDM networks. Two-stage Mixed-Integer Linear Programming (MILP) formulations and heuristics to solve the survivable design problems are proposed. Based on the 2-stage MILP framework, we also propose several extensions to the weakly survivable design problem, considering several performance criteria. Noting that for some logical networks a survivable mapping may not exist, which prohibits us from applying the 2-stage MILP approach, our first extension is to augment the logical network using an MILP formulation to guarantee the existence of a survivable routing. We then propose approaches to balance the logical demands satisfying absolute or ratio-weighted fairness. Finally we show how to formulate the survivable logical topology design problem as an MILP for the multiple failure case.We conclude with an outline of two promising new directions of research

    Scalable Column Generation Models and Algorithms for Optical Network Planning Problems

    Get PDF
    Column Generation Method has been proved to be a powerful tool to model and solve large scale optimization problems in various practical domains such as operation management, logistics and computer design. Such a decomposition approach has been also applied in telecommunication for several classes of classical network design and planning problems with a great success. In this thesis, we confirm that Column Generation Methodology is also a powerful tool in solving several contemporary network design problems that come from a rising worldwide demand of heavy traffic (100Gbps, 400Gbps, and 1Tbps) with emphasis on cost-effective and resilient networks. Such problems are very challenging in terms of complexity as well as solution quality. Research in this thesis attacks four challenging design problems in optical networks: design of p-cycles subject to wavelength continuity, design of dependent and independent p-cycles against multiple failures, design of survivable virtual topologies against multiple failures, design of a multirate optical network architecture. For each design problem, we develop a new mathematical models based on Column Generation Decomposition scheme. Numerical results show that Column Generation methodology is the right choice to deal with hard network design problems since it allows us to efficiently solve large scale network instances which have been puzzles for the current state of art. Additionally, the thesis reveals the great flexibility of Column Generation in formulating design problems that have quite different natures as well as requirements. Obtained results in this thesis show that, firstly, the design of p-cycles should be under a wavelength continuity assumption in order to save the converter cost since the difference between the capacity requirement under wavelength conversion vs. under wavelength continuity is insignificant. Secondly, such results which come from our new general design model for failure dependent p-cycles prove the fact that failure dependent p-cycles save significantly spare capacity than failure independent p-cycles. Thirdly, large instances can be quasi-optimally solved in case of survivable topology designs thanks to our new path-formulation model with online generation of augmenting paths. Lastly, the importance of high capacity devices such as 100Gbps transceiver and the impact of the restriction on number of regeneration sites to the provisioning cost of multirate WDM networks are revealed through our new hierarchical Column Generation model

    Survivability through pre-configured protection in optical mesh networks

    Get PDF
    Network survivability is a very important issue, especially in optical networks that carry huge amount of traffic. Network failures which may be caused by human errors, malfunctional systems and natural disaster (eg. Earthquakes and lightening storms), have occurred quite frequently and sometimes with unpredictable consequences. Survivability is defined as the ability of the network to maintain the continuity of service against failures of network components. Pre-configuration and dynamic restoration are two schemes for network survivability. For each scheme, survivability algorithms can be applied at either Optical Channel sublayer (Och) known as link-based. Or, Optical Multiplex Section sublayer (OMS) known as path-based. The efficiency of survivability algorithms can be assessed through such criteria as capacity efficiency, restoration time and quality service. Dynamic restoration is more efficient than pre-configuration in terms of capacity resource utilization, but restoration time is longer and 100% service recovery cannot be guaranteed because sufficient spare capacity may not be available at the time of failures. Similarly, path-based survivability offers a high performance scheme for utilizing capacity resource, but restoration time is longer than link based survivability

    Time-varying Resilient Virtual Networking Mapping for Multi-location Cloud Data Centers

    Get PDF
    Abstract In the currently dominant cloud computing paradigm, applications are being served in data centers (DCs), which are connected to high capacity optical networks. For bandwidth and consequently cost efficiency reasons, in both DC and optical network domains, virtualization of the physical hardware is exploited. In a DC, it means that multiple so-called virtual machines (VMs) are being hosted on the same physical server. Similarly, the network is partitioned into separate virtual networks, thus providing isolation between distinct virtual network operators (VNOs). Thus, the problem of virtual network mapping arises: how to decide which physical resources to allocate for a particular virtual network? In this thesis, we study that problem in the context of cloud computing with multiple DC sites. This introduces additional flexibility, due to the anycast routing principle: we have the freedom to decide at what particular DC location to serve a particular application. We can exploit this choice to minimize the required resources when solving the virtual network mapping problem. This thesis solves a resilient virtual network mapping problem that optimally decides on the mapping of both network and data center resources, considering time-varying traffic conditions and protecting against possible failures of both network and DC resources. We consider the so-called VNO resilience scheme: rerouting under failure conditions is provided in the virtual network layer. To minimize physical resource capacity requirements, we allow reuse of both network and DC resources: we can reuse the same resources for the rerouting under failure scenarios that are assumed not to occur simultaneously. Since we also protect against DC failures, we allocate backup DC resources, and account for synchronization between primary and backup DCs. To deal with the time variations in the volume and geographical pattern of the application traffic, we investigate the potential benefits (in terms iii of overall bandwidth requirements) of reconfiguring the virtual network mapping from one time period to the next. We provide models with good scalability, and investigate different scenarios to check whether it is worth to change routing for service requirement between time periods. The results come up with our experiments show that the benefits for rerouting is very limited. Keywords: Cloud Computing, Optical Networks, Virtualization, Anycast, VNO resilienc

    Resource Allocation, and Survivability in Network Virtualization Environments

    Get PDF
    Network virtualization can offer more flexibility and better manageability for the future Internet by allowing multiple heterogeneous virtual networks (VN) to coexist on a shared infrastructure provider (InP) network. A major challenge in this respect is the VN embedding problem that deals with the efficient mapping of virtual resources on InP network resources. Previous research focused on heuristic algorithms for the VN embedding problem assuming that the InP network remains operational at all times. In this thesis, we remove that assumption by formulating the survivable virtual network embedding (SVNE) problem and developing baseline policy heuristics and an efficient hybrid policy heuristic to solve it. The hybrid policy is based on a fast re-routing strategy and utilizes a pre-reserved quota for backup on each physical link. Our evaluation results show that our proposed heuristic for SVNE outperforms baseline heuristics in terms of long term business profit for the InP, acceptance ratio, bandwidth efficiency, and response time

    Energy management in communication networks: a journey through modelling and optimization glasses

    Full text link
    The widespread proliferation of Internet and wireless applications has produced a significant increase of ICT energy footprint. As a response, in the last five years, significant efforts have been undertaken to include energy-awareness into network management. Several green networking frameworks have been proposed by carefully managing the network routing and the power state of network devices. Even though approaches proposed differ based on network technologies and sleep modes of nodes and interfaces, they all aim at tailoring the active network resources to the varying traffic needs in order to minimize energy consumption. From a modeling point of view, this has several commonalities with classical network design and routing problems, even if with different objectives and in a dynamic context. With most researchers focused on addressing the complex and crucial technological aspects of green networking schemes, there has been so far little attention on understanding the modeling similarities and differences of proposed solutions. This paper fills the gap surveying the literature with optimization modeling glasses, following a tutorial approach that guides through the different components of the models with a unified symbolism. A detailed classification of the previous work based on the modeling issues included is also proposed

    Survivable mesh-network design & optimization to support multiple QoP service classes

    Get PDF
    Every second, vast amounts of data are transferred over communication systems around the world, and as a result, the demands on optical infrastructures are extending beyond the traditional, ring-based architecture. The range of content and services available from the Internet is increasing, and network operations are constantly under pressure to expand their optical networks in order to keep pace with the ever increasing demand for higher speed and more reliable links
    corecore