23,675 research outputs found

    Quantifying alternative splicing from paired-end RNA-sequencing data

    Full text link
    RNA-sequencing has revolutionized biomedical research and, in particular, our ability to study gene alternative splicing. The problem has important implications for human health, as alternative splicing may be involved in malfunctions at the cellular level and multiple diseases. However, the high-dimensional nature of the data and the existence of experimental biases pose serious data analysis challenges. We find that the standard data summaries used to study alternative splicing are severely limited, as they ignore a substantial amount of valuable information. Current data analysis methods are based on such summaries and are hence suboptimal. Further, they have limited flexibility in accounting for technical biases. We propose novel data summaries and a Bayesian modeling framework that overcome these limitations and determine biases in a nonparametric, highly flexible manner. These summaries adapt naturally to the rapid improvements in sequencing technology. We provide efficient point estimates and uncertainty assessments. The approach allows to study alternative splicing patterns for individual samples and can also be the basis for downstream analyses. We found a severalfold improvement in estimation mean square error compared popular approaches in simulations, and substantially higher consistency between replicates in experimental data. Our findings indicate the need for adjusting the routine summarization and analysis of alternative splicing RNA-seq studies. We provide a software implementation in the R package casper.Comment: Published in at http://dx.doi.org/10.1214/13-AOAS687 the Annals of Applied Statistics (http://www.imstat.org/aoas/) by the Institute of Mathematical Statistics (http://www.imstat.org). With correction

    A polynomial delay algorithm for the enumeration of bubbles with length constraints in directed graphs and its application to the detection of alternative splicing in RNA-seq data

    Full text link
    We present a new algorithm for enumerating bubbles with length constraints in directed graphs. This problem arises in transcriptomics, where the question is to identify all alternative splicing events present in a sample of mRNAs sequenced by RNA-seq. This is the first polynomial-delay algorithm for this problem and we show that in practice, it is faster than previous approaches. This enables us to deal with larger instances and therefore to discover novel alternative splicing events, especially long ones, that were previously overseen using existing methods.Comment: Peer-reviewed and presented as part of the 13th Workshop on Algorithms in Bioinformatics (WABI2013

    PIntron: a Fast Method for Gene Structure Prediction via Maximal Pairings of a Pattern and a Text

    Full text link
    Current computational methods for exon-intron structure prediction from a cluster of transcript (EST, mRNA) data do not exhibit the time and space efficiency necessary to process large clusters of over than 20,000 ESTs and genes longer than 1Mb. Guaranteeing both accuracy and efficiency seems to be a computational goal quite far to be achieved, since accuracy is strictly related to exploiting the inherent redundancy of information present in a large cluster. We propose a fast method for the problem that combines two ideas: a novel algorithm of proved small time complexity for computing spliced alignments of a transcript against a genome, and an efficient algorithm that exploits the inherent redundancy of information in a cluster of transcripts to select, among all possible factorizations of EST sequences, those allowing to infer splice site junctions that are highly confirmed by the input data. The EST alignment procedure is based on the construction of maximal embeddings that are sequences obtained from paths of a graph structure, called Embedding Graph, whose vertices are the maximal pairings of a genomic sequence T and an EST P. The procedure runs in time linear in the size of P, T and of the output. PIntron, the software tool implementing our methodology, is able to process in a few seconds some critical genes that are not manageable by other gene structure prediction tools. At the same time, PIntron exhibits high accuracy (sensitivity and specificity) when compared with ENCODE data. Detailed experimental data, additional results and PIntron software are available at http://www.algolab.eu/PIntron
    corecore