107,095 research outputs found

    Traverse Planning with Temporal-Spatial Constraints

    Get PDF
    We present an approach to planning rover traverses in a domain that includes temporal-spatial constraints. We are using the NASA Resource Prospector mission as a reference mission in our research. The objective of this mission is to explore permanently shadowed regions at a Lunar pole. Most of the time the rover is required to avoid being in shadow. This requirement depends on where the rover is located and when it is at that location. Such a temporal-spatial constraint makes traverse planning more challenging for both humans and machines. We present a mixed-initiative traverse planner which addresses this challenge. This traverse planner is part of the Exploration Ground Data Systems (xGDS), which we have enhanced with new visualization features, new analysis tools, and new automation for path planning, in order to be applicable to the Re-source Prospector mission. The key concept that is the basis of the analysis tools and that supports the automated path planning is reachability in this dynamic environment due to the temporal-spatial constraints

    Modelling potential movement in constrained travel environments using rough space-time prisms

    Get PDF
    The widespread adoption of location-aware technologies (LATs) has afforded analysts new opportunities for efficiently collecting trajectory data of moving individuals. These technologies enable measuring trajectories as a finite sample set of time-stamped locations. The uncertainty related to both finite sampling and measurement errors makes it often difficult to reconstruct and represent a trajectory followed by an individual in space-time. Time geography offers an interesting framework to deal with the potential path of an individual in between two sample locations. Although this potential path may be easily delineated for travels along networks, this will be less straightforward for more nonnetwork-constrained environments. Current models, however, have mostly concentrated on network environments on the one hand and do not account for the spatiotemporal uncertainties of input data on the other hand. This article simultaneously addresses both issues by developing a novel methodology to capture potential movement between uncertain space-time points in obstacle-constrained travel environments

    Open source environment to define constraints in route planning for GIS-T

    Get PDF
    Route planning for transportation systems is strongly related to shortest path algorithms, an optimization problem extensively studied in the literature. To find the shortest path in a network one usually assigns weights to each branch to represent the difficulty of taking such branch. The weights construct a linear preference function ordering the variety of alternatives from the most to the least attractive.Postprint (published version

    Effective Project Scheduling Under Workspace Congestion and Workflow Disturbance Factors

    Full text link
    Effective project management implies the use of advanced planning and scheduling methods that allow to determine feasible sequences of activities and to complete a project on time and on budget. Traditional scheduling tools like fundamental Critical Path Method (CPM) and various methods for Resource Constrained Project Scheduling Problem (RCPSP) and Time Constrained Project Scheduling Problem (TCPSP) have many shortcomings for construction projects where spatial factor plays a critically important role. Previous attempts to interpret space as a specific resource were successful for particular problems of line-of-balance scheduling, space scheduling, dynamic layout planning, horizontal and vertical logic scheduling, workspace congestion mitigating, scheduling multiple projects with movable resources, spatial scheduling of repeated and grouped activities and motion planning. However, none of these methods considers the spatio-temporal requirements in a holistic framework of generic RCPSP problem and provides feasible results accounting for workspace and workflow factors. In this paper we start with the classical RCPSP statement and then present mathematically strong formalisation of the extended generalised problem, taking into account workspace congestion and workflow disturbance constraints specified in practically meaningful and computationally constructive ways. For the generalised RCPSP problem an effective scheduling method is proposed. The method tends to minimise the project makespan while satisfying timing constraints and precedence relations, not exceeding resource utilisation limits, avoiding workspace congestions and keeping workflows continuous. The method reuses so-called serial scheduling scheme and provides for additional computational routines and heuristic priority rules to generate feasible schedules satisfying all the imposed requirements. Advantages of the method and prospects for its application to industrial needs are outlined in the paper too

    A GIS toolkit to evaluate individual and joint accessibility to urban opportunities

    Get PDF
    corecore