723 research outputs found

    Sampling-based path planning for multi-robot systems with co-safe linear temporal logic specifications

    Get PDF
    © 2017, Springer International Publishing AG. This paper addresses the problem of path planning for multiple robots under high-level specifications given as syntactically co-safe linear temporal logic formulae. Most of the existing solutions use the notion of abstraction to obtain a discrete transition system that simulates the dynamics of the robot. Nevertheless, these solutions have poor scalability with the dimension of the configuration space of the robots. For problems with a single robot, sampling-based methods have been presented as a solution to alleviate this limitation. The proposed solution extends the idea of sampling methods to the multiple robot case. The method samples the configuration space of the robots to incrementally constructs a transition system that models the motion of all the robots as a group. This transition system is then combined with a Büchi automaton, representing the specification, in a Cartesian product. The product is updated with each expansion of the transition system until a solution is found. We also present a new algorithm that improves the performance of the proposed method by guiding the expansion of the transition system. The method is demonstrated with examples considering different number of robots and specifications

    Sampling-based reactive motion planning with temporal logic constraints and imperfect state information

    Get PDF
    © 2017, Springer International Publishing AG. This paper presents a method that allows mobile systems with uncertainty in motion and sensing to react to unknown environments while high-level specifications are satisfied. Although previous works have addressed the problem of synthesising controllers under uncertainty constraints and temporal logic specifications, reaction to dynamic environments has not been considered under this scenario. The method uses feedback-based information roadmaps (FIRMs) to break the curse of history associated with partially observable systems. A transition system is incrementally constructed based on the idea of FIRMs by adding nodes on the belief space. Then, a policy is found in the product Markov decision process created between the transition system and a Rabin automaton representing a linear temporal logic formula. The proposed solution allows the system to react to previously unknown elements in the environment. To achieve fast reaction time, a FIRM considering the probability of violating the specification in each transition is used to drive the system towards local targets or to avoid obstacles. The method is demonstrated with an illustrative example

    Asymptotically Optimal Sampling-Based Motion Planning Methods

    Full text link
    Motion planning is a fundamental problem in autonomous robotics that requires finding a path to a specified goal that avoids obstacles and takes into account a robot's limitations and constraints. It is often desirable for this path to also optimize a cost function, such as path length. Formal path-quality guarantees for continuously valued search spaces are an active area of research interest. Recent results have proven that some sampling-based planning methods probabilistically converge toward the optimal solution as computational effort approaches infinity. This survey summarizes the assumptions behind these popular asymptotically optimal techniques and provides an introduction to the significant ongoing research on this topic.Comment: Posted with permission from the Annual Review of Control, Robotics, and Autonomous Systems, Volume 4. Copyright 2021 by Annual Reviews, https://www.annualreviews.org/. 25 pages. 2 figure

    Sampling-based algorithms for motion planning with temporal logic specifications

    Get PDF

    A Survey of Multi-Robot Motion Planning

    Full text link
    Multi-robot Motion Planning (MRMP) is an active research field which has gained attention over the years. MRMP has significant roles to improve the efficiency and reliability of multi-robot system in a wide range of applications from delivery robots to collaborative assembly lines. This survey provides an overview of MRMP taxonomy, state-of-the-art algorithms, and approaches which have been developed for multi-robot systems. This study also discusses the strengths and limitations of each algorithm and their applications in various scenarios. Moreover, based on this, we can draw out open problems for future research.Comment: This is my Ph.D. comprehensive exam repor

    Toward Specification-Guided Active Mars Exploration for Cooperative Robot Teams

    Get PDF
    As a step towards achieving autonomy in space exploration missions, we consider a cooperative robotics system consisting of a copter and a rover. The goal of the copter is to explore an unknown environment so as to maximize knowledge about a science mission expressed in linear temporal logic that is to be executed by the rover. We model environmental uncertainty as a belief space Markov decision process and formulate the problem as a two-step stochastic dynamic program that we solve in a way that leverages the decomposed nature of the overall system. We demonstrate in simulations that the robot team makes intelligent decisions in the face of uncertainty

    Motion-Planning and Control of Autonomous Vehicles to Satisfy Linear Temporal Logic Specifications

    Get PDF
    Motion-planning is an essential component of autonomous aerial and terrestrial vehicles. The canonical Motion-planning problem, which is widely studied in the literature, is of planning point-to-point motion while avoiding obstacles. However, the desired degree of vehicular autonomy has steadily risen, and has consequently led to motion-planning problems where a vehicle is required to accomplish a high-level intelligent task, rather than simply move between two points. One way of specifying such intelligent tasks is via linear temporal logic (LTL) formulae. LTL is a formal logic system that includes temporal operators such as always, eventually, and until besides the usual logical operators. For autonomous vehicles, LTL formulae can concisely express tasks such as persistent surveillance, safety requirements, and temporal orders of visits to multiple locations. Recent control theoretic literature has discussed the generation of reference trajectories and/or the synthesis of feedback control laws to enable a vehicle to move in manners that satisfy LTL specifications. A crucial step in such synthesis is the generation of a so-called discrete abstraction of a vehicle kinematic/dynamic model. Typical techniques of generating a discrete abstraction require strong assumptions on controllability and/or linearity. This dissertation discusses fast motion-planning and control techniques to satisfy LTL specifications for vehicle models with nonholonomic kinematic constraints, which do not satisfy the aforesaid assumptions. The main contributions of this dissertation are as follows. First, we present a new technique for constructing discrete abstractions of a Dubins vehicle model (namely, a vehicle that moves forward at a constant speed with a minimum turning radius). This technique relies on the so-called method of lifted graphs and precomputed reachable set calculations. Using this technique, we provide an algorithm to generate vehicle reference trajectories satisfying LTL specifications without requiring complete controllability in the presence of workspace constraints, and without requiring linearity or linearization of the vehicle model. Second, we present a technique for centralized motion-planning for a team of vehicles to collaboratively satisfy a common LTL specification. This technique is also based on the method of lifted graphs. Third, we present an incremental version of the proposed motion-planning techniques, which has an “anytime property. This property means that a feasible solution is computed quickly, and the iterative updates are made to this solution with a guarantee of convergence to an optimal solution. This version is suited for real-time implementation, where a hard bound on the computation time is imposed. Finally, we present a randomized sampling-based technique for generating reference trajectories that satisfy given LTL specifications. This technique is an alternative to the aforesaid technique based on lifted graphs. We illustrate the proposed techniques using numerical simulation examples. We demonstrate the superiority of the proposed techniques in comparison to the existing literature in terms of computational time and memory requirements
    corecore