957 research outputs found

    Robot path planning using Laplacian behaviour-based control via half-sweep Gauss-Seidel (LBBC-HSGS) Iterative method

    Get PDF
    Essentially, a truly autonomous mobile robot be capable of finding its own path from start to goal location without colliding with any obstacles. This paper investigates the effectiveness of a robot path planning technique that utilizes Laplacian Behaviour-Based Control (LBBC) for robot control and uses Laplace's Equation for generating potential function in the configuration space model. The robot control namely LBBC would enable the robot to recover from getting stuck in a flat region. Furthermore, an efficient iteration technique via Half-Sweep Successive Over-Relaxation (HSSOR) would provide fast computation for solving the Laplace's equation that represents the potential values of the configuration space

    Solving the potential field local minimum problem using internal agent states

    Get PDF
    We propose a new, extended artificial potential field method, which uses dynamic internal agent states. The internal states are modelled as a dynamical system of coupled first order differential equations that manipulate the potential field in which the agent is situated. The internal state dynamics are forced by the interaction of the agent with the external environment. Local equilibria in the potential field are then manipulated by the internal states and transformed from stable equilibria to unstable equilibria, allowiong escape from local minima in the potential field. This new methodology successfully solves reactive path planning problems, such as a complex maze with multiple local minima, which cannot be solved using conventional static potential fields

    Cascading a systolic array and a feedforward neural network for navigation and obstacle avoidance using potential fields

    Get PDF
    A technique is developed for vehicle navigation and control in the presence of obstacles. A potential function was devised that peaks at the surface of obstacles and has its minimum at the proper vehicle destination. This function is computed using a systolic array and is guaranteed not to have local minima. A feedfoward neural network is then used to control the steering of the vehicle using local potential field information. In this case, the vehicle is a trailer truck backing up. Previous work has demonstrated the capability of a neural network to control steering of such a trailer truck backing to a loading platform, but without obstacles. Now, the neural network was able to learn to navigate a trailer truck around obstacles while backing toward its destination. The network is trained in an obstacle free space to follow the negative gradient of the field, after which the network is able to control and navigate the truck to its target destination in a space of obstacles which may be stationary or movable

    Block-synchronous Harmonic Control for Scalable Trajectory Planning

    Get PDF
    ISBN : 978-953-7619-20-6Trajectory planning consists in finding a way to get from a starting position to a goal position while avoiding obstacles within a given environment or navigation space. Harmonic functions may be used as potential fields for trajectory planning. Such functions do not have local extrema, so that control algorithms may reduce to locally descend the potential field until reaching a minimum, when obstacles correspond to maxima of the potential and goals correspond to minima. This chapter presents a parallel hardware implementation of this navigation method on reconfigurable digital circuits. Trajectories are estimated after the iterated computation of the harmonic function, given the goal and obstacle positions of the navigation problem. The proposed massively distributed implementation locally computes the direction to choose to get to the goal position at any point of the environment. Changes in this environment may be immediately taken into account, for example when obstacles are discovered during an on-line exploration. To fit real-world applications, our implementation has been designed to deal with very large navigation environments while optimizing computation time

    Finite Element Analysis of Hepatic Radiofrequency Ablation Probes using Temperature-Dependent Electrical Conductivity

    Get PDF
    BACKGROUND: Few finite element models (FEM) have been developed to describe the electric field, specific absorption rate (SAR), and the temperature distribution surrounding hepatic radiofrequency ablation probes. To date, a coupled finite element model that accounts for the temperature-dependent electrical conductivity changes has not been developed for ablation type devices. While it is widely acknowledged that accounting for temperature dependent phenomena may affect the outcome of these models, the effect has not been assessed. METHODS: The results of four finite element models are compared: constant electrical conductivity without tissue perfusion, temperature-dependent conductivity without tissue perfusion, constant electrical conductivity with tissue perfusion, and temperature-dependent conductivity with tissue perfusion. RESULTS: The data demonstrate that significant errors are generated when constant electrical conductivity is assumed in coupled electrical-heat transfer problems that operate at high temperatures. These errors appear to be closely related to the temperature at which the ablation device operates and not to the amount of power applied by the device or the state of tissue perfusion. CONCLUSION: Accounting for temperature-dependent phenomena may be critically important in the safe operation of radiofrequency ablation device that operate near 100°C

    Lunar gravitational field estimation and the effects of mismodeling upon lunar satellite orbit prediction

    Get PDF
    Lunar spherical harmonic gravity coefficients are estimated from simulated observations of a near-circular low altitude polar orbiter disturbed by lunar mascons. Lunar gravity sensing missions using earth-based nearside observations with and without satellite-based far-side observations are simulated and least squares maximum likelihood estimates are developed for spherical harmonic expansion fit models. Simulations and parameter estimations are performed by a modified version of the Smithsonian Astrophysical Observatory's Planetary Ephemeris Program. Two different lunar spacecraft mission phases are simulated to evaluate the estimated fit models. Results for predicting state covariances one orbit ahead are presented along with the state errors resulting from the mismodeled gravity field. The position errors from planning a lunar landing maneuver with a mismodeled gravity field are also presented. These simulations clearly demonstrate the need to include observations of satellite motion over the far side in estimating the lunar gravity field. The simulations also illustrate that the eighth degree and order expansions used in the simulated fits were unable to adequately model lunar mascons
    • …
    corecore