22,135 research outputs found

    From 3D Models to 3D Prints: an Overview of the Processing Pipeline

    Get PDF
    Due to the wide diffusion of 3D printing technologies, geometric algorithms for Additive Manufacturing are being invented at an impressive speed. Each single step, in particular along the Process Planning pipeline, can now count on dozens of methods that prepare the 3D model for fabrication, while analysing and optimizing geometry and machine instructions for various objectives. This report provides a classification of this huge state of the art, and elicits the relation between each single algorithm and a list of desirable objectives during Process Planning. The objectives themselves are listed and discussed, along with possible needs for tradeoffs. Additive Manufacturing technologies are broadly categorized to explicitly relate classes of devices and supported features. Finally, this report offers an analysis of the state of the art while discussing open and challenging problems from both an academic and an industrial perspective.Comment: European Union (EU); Horizon 2020; H2020-FoF-2015; RIA - Research and Innovation action; Grant agreement N. 68044

    Colored fused filament fabrication

    Full text link
    Fused filament fabrication is the method of choice for printing 3D models at low cost and is the de-facto standard for hobbyists, makers, and schools. Unfortunately, filament printers cannot truly reproduce colored objects. The best current techniques rely on a form of dithering exploiting occlusion, that was only demonstrated for shades of two base colors and that behaves differently depending on surface slope. We explore a novel approach for 3D printing colored objects, capable of creating controlled gradients of varying sharpness. Our technique exploits off-the-shelves nozzles that are designed to mix multiple filaments in a small melting chamber, obtaining intermediate colors once the mix is stabilized. We apply this property to produce color gradients. We divide each input layer into a set of strata, each having a different constant color. By locally changing the thickness of the stratum, we change the perceived color at a given location. By optimizing the choice of colors of each stratum, we further improve quality and allow the use of different numbers of input filaments. We demonstrate our results by building a functional color printer using low cost, off-the-shelves components. Using our tool a user can paint a 3D model and directly produce its physical counterpart, using any material and color available for fused filament fabrication

    Past, Present, and Future of Simultaneous Localization And Mapping: Towards the Robust-Perception Age

    Get PDF
    Simultaneous Localization and Mapping (SLAM)consists in the concurrent construction of a model of the environment (the map), and the estimation of the state of the robot moving within it. The SLAM community has made astonishing progress over the last 30 years, enabling large-scale real-world applications, and witnessing a steady transition of this technology to industry. We survey the current state of SLAM. We start by presenting what is now the de-facto standard formulation for SLAM. We then review related work, covering a broad set of topics including robustness and scalability in long-term mapping, metric and semantic representations for mapping, theoretical performance guarantees, active SLAM and exploration, and other new frontiers. This paper simultaneously serves as a position paper and tutorial to those who are users of SLAM. By looking at the published research with a critical eye, we delineate open challenges and new research issues, that still deserve careful scientific investigation. The paper also contains the authors' take on two questions that often animate discussions during robotics conferences: Do robots need SLAM? and Is SLAM solved

    Automated sequence and motion planning for robotic spatial extrusion of 3D trusses

    Full text link
    While robotic spatial extrusion has demonstrated a new and efficient means to fabricate 3D truss structures in architectural scale, a major challenge remains in automatically planning extrusion sequence and robotic motion for trusses with unconstrained topologies. This paper presents the first attempt in the field to rigorously formulate the extrusion sequence and motion planning (SAMP) problem, using a CSP encoding. Furthermore, this research proposes a new hierarchical planning framework to solve the extrusion SAMP problems that usually have a long planning horizon and 3D configuration complexity. By decoupling sequence and motion planning, the planning framework is able to efficiently solve the extrusion sequence, end-effector poses, joint configurations, and transition trajectories for spatial trusses with nonstandard topologies. This paper also presents the first detailed computation data to reveal the runtime bottleneck on solving SAMP problems, which provides insight and comparing baseline for future algorithmic development. Together with the algorithmic results, this paper also presents an open-source and modularized software implementation called Choreo that is machine-agnostic. To demonstrate the power of this algorithmic framework, three case studies, including real fabrication and simulation results, are presented.Comment: 24 pages, 16 figure

    Geometric-based Optimization Algorithms for Cable Routing and Branching in Cluttered Environments

    Get PDF
    The need for designing lighter and more compact systems often leaves limited space for planning routes for the connectors that enable interactions among the system’s components. Finding optimal routes for these connectors in a densely populated environment left behind at the detail design stage has been a challenging problem for decades. A variety of deterministic as well as heuristic methods has been developed to address different instances of this problem. While the focus of the deterministic methods is primarily on the optimality of the final solution, the heuristics offer acceptable solutions, especially for such problems, in a reasonable amount of time without guaranteeing to find optimal solutions. This study is an attempt to furthering the efforts in deterministic optimization methods to tackle the routing problem in two and three dimensions by focusing on the optimality of final solutions. The objective of this research is twofold. First, a mathematical framework is proposed for the optimization of the layout of wiring connectors in planar cluttered environments. The problem looks at finding the optimal tree network that spans multiple components to be connected with the aim of minimizing the overall length of the connectors while maximizing their common length (for maintainability and traceability of connectors). The optimization problem is formulated as a bi-objective problem and two solution methods are proposed: (1) to solve for the optimal locations of a known number of breakouts (where the connectors branch out) using mixed-binary optimization and visibility notion and (2) to find the minimum length tree that spans multiple components of the system and generates the optimal layout using the previously-developed convex hull based routing. The computational performance of these methods in solving a variety of problems is further evaluated. Second, the problem of finding the shortest route connecting two given nodes in a 3D cluttered environment is considered and addressed through deterministically generating a graphical representation of the collision-free space and searching for the shortest path on the found graph. The method is tested on sample workspaces with scattered convex polyhedra and its computational performance is evaluated. The work demonstrates the NP-hardness aspect of the problem which becomes quickly intractable as added components or increase in facets are considered
    • …
    corecore