6,348 research outputs found

    Dynamic graph-based search in unknown environments

    Get PDF
    A novel graph-based approach to search in unknown environments is presented. A virtual geometric structure is imposed on the environment represented in computer memory by a graph. Algorithms use this representation to coordinate a team of robots (or entities). Local discovery of environmental features cause dynamic expansion of the graph resulting in global exploration of the unknown environment. The algorithm is shown to have O(k.nH) time complexity, where nH is the number of vertices of the discovered environment and 1 <= k <= nH. A maximum bound on the length of the resulting walk is given

    Reactive Trajectory Generation in an Unknown Environment

    Full text link
    Autonomous trajectory generation for unmanned aerial vehicles (UAVs) in unknown environments continues to be an important research area as UAVs become more prolific. We define a trajectory generation algorithm for a vehicle in an unknown environment with wind disturbances, that relies only on the vehicle's on-board distance sensors and communication with other vehicles within a finite region to generate a smooth, collision-free trajectory up to the fourth derivative. The proposed trajectory generation algorithm can be used in conjunction with high-level planners and low-level motion controllers. The algorithm provides guarantees that the trajectory does not violate the vehicle's thrust limitation, sensor constraints, or a user-defined clearance radius around other vehicles and obstacles. Simulation results of a quadrotor moving through an unknown environment with a moving obstacle demonstrates the trajectory generation performance.Comment: Revised version with minor text updates and more representative simulation results for IROS 2017 conferenc

    Efficient Multi-Robot Coverage of a Known Environment

    Full text link
    This paper addresses the complete area coverage problem of a known environment by multiple-robots. Complete area coverage is the problem of moving an end-effector over all available space while avoiding existing obstacles. In such tasks, using multiple robots can increase the efficiency of the area coverage in terms of minimizing the operational time and increase the robustness in the face of robot attrition. Unfortunately, the problem of finding an optimal solution for such an area coverage problem with multiple robots is known to be NP-complete. In this paper we present two approximation heuristics for solving the multi-robot coverage problem. The first solution presented is a direct extension of an efficient single robot area coverage algorithm, based on an exact cellular decomposition. The second algorithm is a greedy approach that divides the area into equal regions and applies an efficient single-robot coverage algorithm to each region. We present experimental results for two algorithms. Results indicate that our approaches provide good coverage distribution between robots and minimize the workload per robot, meanwhile ensuring complete coverage of the area.Comment: In proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 201
    • …
    corecore