2,802 research outputs found

    Network planning for the future railway communications

    Get PDF
    Los Sistemas Inteligentes de Transporte están cambiando la forma en que concebimos el futuro de la movilidad. En particular, los ferrocarriles están experimentando un proceso de transformación para modernizar el transporte público y las operaciones ferroviarias. Tecnologías como el 5G, la fibra óptica y la nube han surgido como catalizadores para digitalizar el ferrocarril proporcionando comunicaciones de alta velocidad y baja latencia. Este TFG se centra en la exploración de redes que permitan el control del tren y la transmisión de datos a bordo. El objetivo es planificar la infraestructura de red (dimensionamiento y asignación de recursos) necesaria para las futuras comunicaciones del sistema ferroviario de larga distancia de la Deutsche Bahn en Alemania. En este trabajo, proponemos una arquitectura de red que puede satisfacer los requisitos de rendimiento de las aplicaciones para trenes y pasajeros. Presentamos un método para la colocación de estaciones base 5G a lo largo de las vías del tren para garantizar el rendimiento necesario en el borde de la celda. Por último, presentamos el problema de colocación y asignación de centros de datos. El objetivo es encontrar el número necesario de centros de datos y su ubicación en la red, y asignarlos a cada estación de tren. Realizamos simulaciones en cuatro escenarios diferentes, en los que modificamos parámetros de entrada como la latencia máxima tolerada y el número máximo de centros de datos. Los resultados obtenidos muestran el compromiso entre la latencia alcanzada y el coste de la infraestructura.Els Sistemes Intel·ligents de Transport estan canviant la manera en què concebem el futur de la mobilitat. En particular, els ferrocarrils estan experimentant un procés de transformació per modernitzar el transport públic i les operacions ferroviàries. Tecnologies com el 5G, la fibra òptica i el núvol han sorgit com a catalitzadors per digitalitzar el ferrocarril proporcionant comunicacions d'alta velocitat i baixa latència. Aquest TFG se centra en l'exploració de xarxes que permetin el control dels trens i la transmissió de dades a bord. L'objectiu és planificar la infraestructura de xarxa (dimensionament i assignació de recursos) necessària per a les futures comunicacions del sistema ferroviari de llarga distància de la Deutsche Bahn a Alemanya. En aquest treball, proposem una arquitectura de xarxa que pot satisfer els requisits de rendiment de les aplicacions per a trens i passatgers. Presentem un mètode per a la col·locació d'estacions base 5G al llarg de les vies del tren per garantir el rendiment necessari a la vora de la cel·la. Per últim, presentem el problema de col·locació i assignació de centres de dades. L'objectiu és trobar el nombre necessari de centres de dades i la seva ubicació a la xarxa, i assignar-los a cada estació de tren. Realitzem simulacions en quatre escenaris diferents, on modifiquem paràmetres d'entrada com la latència màxima tolerada i el nombre màxim de centres de dades. Els resultats obtinguts mostren el compromís entre la latència assolida i el cost de la infraestructura.Smart Transportation Systems are changing the way we conceive the future of mobility. In particular, railways are undergoing a transformation process to modernize public transportation and rail operation. Technologies like 5G, optical fiber and the cloud have emerged as catalysts to digitalize the railway by providing high-speed and low-latency communications. This bachelor's thesis focuses on the exploration of networks enabling train control and on-board data communications. The goal is to plan the network infrastructure (dimensioning and resource allocation) needed for the future communications in the train mobility scenario for Deutsche Bahn's long-distance railway system in Germany. In this work, we propose a network architecture that can meet the performance requirements of train and passenger applications. We present an approach for 5G base station placement along the rail tracks to guarantee the necessary throughput at the cell edge. Finally, we introduce the data center placement and assignment problem. The objective is to find the required number of data centers and their location in the network, and to assign them to each train station. We perform simulations in four different scenarios, in which we modify input parameters such as the maximum tolerated latency and the maximum number of data centers. The obtained results show the trade-off between the achieved latency and the infrastructure cost

    The Future of Mobile Industry

    Get PDF
    This paper discusses the future of mobile industry along with some of the background leading to the emergence of wireless technology. First, it gives an overview of today’s telecommunication network and the major differences between fixed wired networks and wireless networks. The discussion then focuses on the challenges facing the wireless industry and the way out through aggressive innovation by employing Wireless Intelligence Network (WIN) technology. The paper also discusses some important trends in wireless industry and the customers expectations which are also part of the challenges for the mobile industry. Finally particular reference is made to the developing nations especially Nigeria in the ongoing trends in mobile communication industry

    Logistics real estate markets: indicators of structural change, linking land use and freight transport

    Get PDF
    The system of physical distribution that comprises transport and logistics, warehousing and wholesale, is an ideal indicator of structural change. Distribution and logistics have developed dynamically, with respect to new technologies, corporate restructuring, and a changing market environment. Whereas traditional logistics were characterized primarily by the demand of manufacturing customers for the shipment of bulk-commodities, modern production and service systems require frequent deliveries over great distances, with high inventory turnovers instead of storage. As a consequence, the locational profiles of distribution firms have changed as well, both at a large-scale level and within metropolitan regions. Based on recent findings of the European Warehousing Index, the paper points out how the European system of goods movement has changed in terms of regional distribution markets and warehousing location. Secondly, the consequences of locational dynamics within metropolitan regions are considered. The dominance of the truck and the suburbanisation of large distribution centres raise serious concern about logistics management, traffic reduction and locational policy. Referring to selected places such as the Ruhr Area, Hamburg or Berlin-Brandenburg, the paper demonstrates how critical the relationship between cities and goods distribution is becoming, with regard both to the regional economy and the urban environment. Is there a chance for regional, spatially oriented management of supply chains? In the case of the Ruhr Area, it is also questioned whether a certain 'knowledge milieu' (logistics research, applied sciences) may contribute to this goal. The particular benefits of investigating logistics real estate markets are fourfold: - They allow for a precise insight into regionally differentiated developments. - They connect the system of 'flows' with material 'space'. - They demonstrate that structural change is by no means neutral for the environment, regarding specific transport and land use implications of distribution. - They represent the emergence of new players in land use planning and policy (i.e. developers), thus shaping the system of political regulation.

    The Application of a Dendric Cell Algorithm to a Robotic Classifier

    Get PDF
    The dendritic cell algorithm is an immune-inspired technique for processing time-dependant data. Here we propose it as a possible solution for a robotic classification problem. The dendritic cell algorithm is implemented on a real robot and an investigation is performed into the effects of varying the migration threshold median for the cell population. The algorithm performs well on a classification task with very little tuning. Ways of extending the implementation to allow it to be used as a classifier within the field of robotic security are suggested

    Data collection system: Earth Resources Technology Satellite-1

    Get PDF
    Subjects covered at the meeting concerned results on the overall data collection system including sensors, interface hardware, power supplies, environmental enclosures, data transmission, processing and distribution, maintenance and integration in resources management systems

    On the feasibility of using current data centre infrastructure for latency-sensitive applications

    Get PDF
    It has been claimed that the deployment of fog and edge computing infrastructure is a necessity to make high-performance cloud-based applications a possibility. However, there are a large number of middle-ground latency-sensitive applications such as online gaming, interactive photo editing and multimedia conferencing that require servers deployed closer to users than in globally centralised clouds but do not necessarily need the extreme low-latency provided by a new infrastructure of micro data centres located at the network edge, e.g., in base stations and ISP Points of Presence. In this paper we analyse a snapshot of today's data centres and the distribution of users around the globe and conclude that existing infrastructure provides a sufficiently distributed platform for middle-ground applications requiring a response time of 20-20020\hbox{-}20020-200 ms. However, while placement and selection of edge servers for extreme low-latency applications is a relatively straightforward matter of choosing the closest, providing a high quality of experience for middle-ground latency applications that use the more widespread distribution of today's data centres, as we advocate in this paper, raises new management challenges to develop algorithms for optimising the placement of and the per-request selection between replicated service instances

    On the Feasibility of Using Current Data Centre Infrastructure for Latency-sensitive Applications

    Get PDF
    IEEE It has been claimed that the deployment of fog and edge computing infrastructure is a necessity to make high-performance cloud-based applications a possibility. However, there are a large number of middle-ground latency-sensitive applications such as online gaming, interactive photo editing and multimedia conferencing that require servers deployed closer to users than in globally centralised clouds but do not necessarily need the extreme low-latency provided by a new infrastructure of micro data centres located at the network edge, e.g. in base stations and ISP Points of Presence. In this paper we analyse a snapshot of today & #x0027;s data centres and the distribution of users around the globe and conclude that existing infrastructure provides a sufficiently distributed platform for middle-ground applications requiring a response time of 20200  ms20-200\;ms . However, while placement and selection of edge servers for extreme low-latency applications is a relatively straightforward matter of choosing the closest, providing a high quality of experience for middle-ground latency applications that use the more widespread distribution of today & #x0027;s data centres, as we advocate in this paper, raises new management challenges to develop algorithms for optimising the placement of and the per-request selection between replicated service instances

    Multi-community command and control systems in law enforcement: An introductory planning guide

    Get PDF
    A set of planning guidelines for multi-community command and control systems in law enforcement is presented. Essential characteristics and applications of these systems are outlined. Requirements analysis, system concept design, implementation planning, and performance and cost modeling are described and demonstrated with numerous examples. Program management techniques and joint powers agreements for multicommunity programs are discussed in detail. A description of a typical multi-community computer-aided dispatch system is appended

    Optical Networks and Interconnects

    Full text link
    The rapid evolution of communication technologies such as 5G and beyond, rely on optical networks to support the challenging and ambitious requirements that include both capacity and reliability. This chapter begins by giving an overview of the evolution of optical access networks, focusing on Passive Optical Networks (PONs). The development of the different PON standards and requirements aiming at longer reach, higher client count and delivered bandwidth are presented. PON virtualization is also introduced as the flexibility enabler. Triggered by the increase of bandwidth supported by access and aggregation network segments, core networks have also evolved, as presented in the second part of the chapter. Scaling the physical infrastructure requires high investment and hence, operators are considering alternatives to optimize the use of the existing capacity. This chapter introduces different planning problems such as Routing and Spectrum Assignment problems, placement problems for regenerators and wavelength converters, and how to offer resilience to different failures. An overview of control and management is also provided. Moreover, motivated by the increasing importance of data storage and data processing, this chapter also addresses different aspects of optical data center interconnects. Data centers have become critical infrastructure to operate any service. They are also forced to take advantage of optical technology in order to keep up with the growing capacity demand and power consumption. This chapter gives an overview of different optical data center network architectures as well as some expected directions to improve the resource utilization and increase the network capacity
    corecore