577 research outputs found

    System of Terrain Analysis, Energy Estimation and Path Planning for Planetary Exploration by Robot Teams

    Get PDF
    NASA’s long term plans involve a return to manned moon missions, and eventually sending humans to mars. The focus of this project is the use of autonomous mobile robotics to enhance these endeavors. This research details the creation of a system of terrain classification, energy of traversal estimation and low cost path planning for teams of inexpensive and potentially expendable robots. The first stage of this project was the creation of a model which estimates the energy requirements of the traversal of varying terrain types for a six wheel rocker-bogie rover. The wheel/soil interaction model uses Shibly’s modified Bekker equations and incorporates a new simplified rocker-bogie model for estimating wheel loads. In all but a single trial the relative energy requirements for each soil type were correctly predicted by the model. A path planner for complete coverage intended to minimize energy consumption was designed and tested. It accepts as input terrain maps detailing the energy consumption required to move to each adjacent location. Exploration is performed via a cost function which determines the robot’s next move. This system was successfully tested for multiple robots by means of a shared exploration map. At peak efficiency, the energy consumed by our path planner was only 56% that used by the best case back and forth coverage pattern. After performing a sensitivity analysis of Shibly’s equations to determine which soil parameters most affected energy consumption, a neural network terrain classifier was designed and tested. The terrain classifier defines all traversable terrain as one of three soil types and then assigns an assumed set of soil parameters. The classifier performed well over all, but had some difficulty distinguishing large rocks from sand. This work presents a system which successfully classifies terrain imagery into one of three soil types, assesses the energy requirements of terrain traversal for these soil types and plans efficient paths of complete coverage for the imaged area. While there are further efforts that can be made in all areas, the work achieves its stated goals

    System Design, Motion Modelling and Planning for a Recon figurable Wheeled Mobile Robot

    Get PDF
    Over the past ve decades the use of mobile robotic rovers to perform in-situ scienti c investigations on the surfaces of the Moon and Mars has been tremendously in uential in shaping our understanding of these extraterrestrial environments. As robotic missions have evolved there has been a greater desire to explore more unstructured terrain. This has exposed mobility limitations with conventional rover designs such as getting stuck in soft soil or simply not being able to access rugged terrain. Increased mobility and terrain traversability are key requirements when considering designs for next generation planetary rovers. Coupled with these requirements is the need to autonomously navigate unstructured terrain by taking full advantage of increased mobility. To address these issues, a high degree-of-freedom recon gurable platform that is capable of energy intensive legged locomotion in obstacle-rich terrain as well as wheeled locomotion in benign terrain is proposed. The complexities of the planning task that considers the high degree-of-freedom state space of this platform are considerable. A variant of asymptotically optimal sampling-based planners that exploits the presence of dominant sub-spaces within a recon gurable mobile robot's kinematic structure is proposed to increase path quality and ensure platform safety. The contributions of this thesis include: the design and implementation of a highly mobile planetary analogue rover; motion modelling of the platform to enable novel locomotion modes, along with experimental validation of each of these capabilities; the sampling-based HBFMT* planner that hierarchically considers sub-spaces to better guide search of the complete state space; and experimental validation of the planner with the physical platform that demonstrates how the planner exploits the robot's capabilities to uidly transition between various physical geometric con gurations and wheeled/legged locomotion modes

    Where to Map? Iterative Rover-Copter Path Planning for Mars Exploration

    Full text link
    In addition to conventional ground rovers, the Mars 2020 mission will send a helicopter to Mars. The copter's high-resolution data helps the rover to identify small hazards such as steps and pointy rocks, as well as providing rich textual information useful to predict perception performance. In this paper, we consider a three-agent system composed of a Mars rover, copter, and orbiter. The objective is to provide good localization to the rover by selecting an optimal path that minimizes the localization uncertainty accumulation during the rover's traverse. To achieve this goal, we quantify the localizability as a goodness measure associated with the map, and conduct a joint-space search over rover's path and copter's perceptual actions given prior information from the orbiter. We jointly address where to map by the copter and where to drive by the rover using the proposed iterative copter-rover path planner. We conducted numerical simulations using the map of Mars 2020 landing site to demonstrate the effectiveness of the proposed planner.Comment: 8 pages, 7 figure

    Motion Dynamics of a Rover With Slip-Based Traction Model

    Get PDF
    Proceedings of the 2002 IEEE International Conference on Robotics & Automation, Washington, DC, May 200

    Slide-Down Prevention for Wheeled Mobile Robots on Slopes

    Get PDF
    Wheeled mobile robots on inclined terrain can slide down due to loss of traction and gravity. This type of instability, which is different from tip-over, can provoke uncontrolled motion or get the vehicle stuck. This paper proposes slide-down prevention by real-time computation of a straightforward stability margin for a given ground-wheel friction coefficient. This margin is applied to the case study of Lazaro, a hybrid skid-steer mobile robot with caster-leg mechanism that allows tests with four or five wheel contact points. Experimental results for both ADAMS simulations and the actual vehicle demonstrate the effectiveness of the proposed approach.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech

    Study on Path Planning Method Considering Localization Accuracy for Exploration Rover

    Get PDF
    学位の種別: 修士University of Tokyo(東京大学

    Rough-terrain mobile robot planning and control with application to planetary exploration

    Get PDF
    Thesis (Ph.D.)--Massachusetts Institute of Technology, Dept. of Mechanical Engineering, 2001.Includes bibliographical references (leaves 119-130).Future planetary exploration missions will require mobile robots to perform difficult tasks in highly challenging terrain, with limited human supervision. Current motion planning and control algorithms are not well suited to rough-terrain mobility, since they generally do not consider the physical characteristics of the rover and its environment. Failure to understand these characteristics could lead to rover entrapment and mission failure. In this thesis, methods are presented for improved rough-terrain mobile robot mobility, which exploit fundamental physical models of the rover and terrain. Wheel-terrain interaction has been shown to be critical to rough terrain mobility. A wheel-terrain interaction model is presented, and a method for on-line estimation of important model parameters is proposed. The local terrain profile also strongly influences robot mobility. A method for on-line estimation of wheel-terrain contact angles is presented. Simulation and experimental results show that wheel-terrain model parameters and contact angles can be estimated on-line with good accuracy. Two rough-terrain planning algorithms are introduced. First, a motion planning algorithm is presented that is computationally efficient and considers uncertainty in rover sensing and localization. Next, an algorithm for geometrically reconfiguring the rover kinematic structure to optimize tipover stability margin is presented. Both methods utilize models developed earlier in the thesis.(cont.) Simulation and experimental results on the Jet Propulsion Laboratory Sample Return Rover show that the algorithms allow highly stable, semi-autonomous mobility in rough terrain. Finally, a rough-terrain control algorithm is presented that exploits the actuator redundancy found in multi-wheeled mobile robots to improve ground traction and reduce power consumption. The algorithm uses models developed earlier in the thesis. Simulation and experimental results show that the algorithm leads to improved wheel thrust and thus increased mobility in rough terrain.by Karl David Iagnemma.Ph.D

    Terrain Aware Traverse Planning for Mars Rovers

    Get PDF
    NASA is proposing a Mars Sample Return mission, to be completed within one Martian year, that will require enhanced autonomy to perform its duties faster, safer, and more efficiently. With its main purpose being to retrieve samples possibly tens of kilometers away, it will need to drive beyond line-of-sight to get to its target more quickly than any rovers before. This research proposes a new methodology to support a sample return mission and is divided into three compo-nents: map preparation (map of traversability, i.e., ability of a terrain to sustain the traversal of a vehicle), path planning (pre-planning and replanning), and terrain analysis. The first component aims at creating a better knowledge of terrain traversability to support planning, by predicting rover slip and drive speed along the traverse using orbital data. By overlapping slope, rock abundance and terrain types at the same location, the expected drive velocity is obtained. By combining slope and thermal data, additional information about the experienced slip is derived, indicating whether it will be low (less than 30%) or medium to high (more than 30%). The second component involves planning the traverse for one Martian day (or sol) at a time, based on the map of expected drive speed. This research proposes to plan, offline, several paths traversable in one sol. Once online, the rover chooses the fastest option (the path cost being calculated using the distance divided by the expected velocity). During its drive, the rover monitors the terrain via analysis of its experienced wheel slip and actual speed. This information is then passed along the different pre-planned paths over a given distance (e.g., 25 m) and the map of traversability is locally updated given this new knowledge. When an update occurs, the rover calculates the new time of arrival of the various paths and replans its route if necessary. When tested in a simulation study on maps of the Columbia Hills, Mars, the rover successfully updates the map given new information drawn from a modified map used as ground truth for simulation purposes and replans its traverse when needed. The third component describes a method to assess the soil in-situ in case of dangerous terrain detected during the map update, or if the monitoring is not enough to confirm the traversability predicted by the map. The rover would deploy a shear vane instrument to compute intrinsic terrain parameters, information then propagated ahead of the rover to update the map and replan if necessary. Experiments in a laboratory setting as well as in the field showed promising results, the mounted shear vane giving values close to the expected terrain parameters of the tested soils

    Autonomous Pathfinding for Planetary Rover by Implementing A* Algorithm on an Aerial Map Processed Using MATLAB Image Processing Tool

    Get PDF
    Human curiosity to discover new things and exploring unknown regions, have continually to development of robots, which became a powerful tools for accessing dangerous environments or exploring regions too distant for human. Previous robot technology functioned under continues human supervision, limiting the robot to confined area and pre-programmed task. However,as exploration moved to regions where communication is ineffective or unviable, robots were used to carry out complex tasks without human supervision. To empower such capacities, robots are being upgraded by advances extending from new sensor improvement to automated mission planning software, circulated automated control, and more proficient power systems. With the advancement of autonomy science robotics technology developed and the robots became more and more capable of operating multi task, under minimal human supervision. In this project work we aim at designing an ONS (Offline Navigation System) system for the planetary rover which will use aerial map taken from satellite and pre-process into a grid map which is then will be used by the rover to travel from one place to another place and completing its mission. The aerial map is processed using Matlab image processing tool to convert into a grid map and search for shortest route is implemented using A* algorithm. The shortest route result is then converted into microcontroller signal to move the rover. With this system the rovers will have the ability to predict the best possible path even if the communication to the satellite is broken
    corecore