90 research outputs found

    5G: 2020 and Beyond

    Get PDF
    The future society would be ushered in a new communication era with the emergence of 5G. 5G would be significantly different, especially, in terms of architecture and operation in comparison with the previous communication generations (4G, 3G...). This book discusses the various aspects of the architecture, operation, possible challenges, and mechanisms to overcome them. Further, it supports users? interac- tion through communication devices relying on Human Bond Communication and COmmunication-NAvigation- SENsing- SErvices (CONASENSE).Topics broadly covered in this book are; • Wireless Innovative System for Dynamically Operating Mega Communications (WISDOM)• Millimeter Waves and Spectrum Management• Cyber Security• Device to Device Communicatio

    5G: 2020 and Beyond

    Get PDF
    The future society would be ushered in a new communication era with the emergence of 5G. 5G would be significantly different, especially, in terms of architecture and operation in comparison with the previous communication generations (4G, 3G...). This book discusses the various aspects of the architecture, operation, possible challenges, and mechanisms to overcome them. Further, it supports users? interac- tion through communication devices relying on Human Bond Communication and COmmunication-NAvigation- SENsing- SErvices (CONASENSE).Topics broadly covered in this book are; • Wireless Innovative System for Dynamically Operating Mega Communications (WISDOM)• Millimeter Waves and Spectrum Management• Cyber Security• Device to Device Communicatio

    Improvement of 5G performance through network densification in millimetre wave band

    Get PDF
    Recently, there has been a substantial growth in mobile data traffic due to the widespread of data hungry devices such as mobiles and laptops. The anticipated high traffic demands and low latency requirements stemmed from the Internet of Things (IoT) and Machine Type Communications (MTC) can only be met with radical changes to the network paradigm such as harnessing the millimetre wave (mmWave) band in Ultra-Dense Network (UDN). This thesis presents many challenges, problems and questions that arise in research and design stage of 5G network. The main challenges of 5G in mmWave can be characterised with the following attributes: i- huge traffic demands, with very high data rate requirements, ii- high interference in UDN, iii increased handover in UDN, higher dependency on Line of Sight (LOS) coverage and high shadow fading, and iv-massive MTC traffic due to billions of connected devices. In this work, software simulation tools have been used to evaluate the proposed solutions. Therefore, we have introduced 5G network based on network densification. Network densification includes densification over frequency through mmWave, and densification over space through higher number of antennas, Higher Order Sectorisation (HOS), and denser deployment of small-cells. Our results show that the densification theme has significantly improved network capacity and user Quality of Experience (QoE). UDN network can efficiently raise the user experience to the level that 5G vision promised. However, one of the drawback of using UDN and HOS is the significant increase in Inter-Cell Interference (ICI). Therefore, ICI has been addressed in this work to increase the gain of densification. ICI can degrade the performance of wireless network, particularly in UDN due to the increased interference from surrounding cells. We have used Fractional Frequency Reuse (FFR) as ICI Coordination (ICIC) for UDN network and HOS environment. The work shows that FFR has improved the network performance in terms of cell-edge data throughput and average cell throughput, and maintain the peak data throughput at a certain threshold. Additionally, HOS has shown even greater gain over default sectored sites when the interference is carefully coordinated. To generalise the principle of densification, we have introduced Distributed Base Station (DBS) as the envisioned network architecture for 5G in mmWave. Remotely distributed antennas in DBS architecture have been harnessed in order to compensate for the high path loss that characterise mmWave propagation. The proposed architecture has significantly improved the user data throughput, decreased the unnecessary handovers as a result of dense network, increased the LOS coverage probability, and reduced the impact of shadow fading. Additionally, this research discusses the regulatory requirements at mmWave band for the Maximum Permissible Exposure (MPE). Finally, scheduling massive MTC traffic in 5G has been considered. MTC is expected to contribute to the majority of IoT traffic. In this context, an algorithm has been developed to schedule this type of traffic. The results demonstrate the gain of using distributed antennas on MTC traffic in terms of spectral efficiency, data throughput, and fairness. The results show considerable improvement in the performance metrics. The combination of these contributions has provided remarkable increase in data throughput to achieve the 5G vision of “massive” capacity and to support human and machine traffic

    Validation of the ITU-R P series radio wave propagation model for millimetre wave V-Band (60GHz) line-of-sight point-to-point short distance link

    Get PDF
    Millimetre-wave communication systems have a very high potential to become mobile technology of choice for future 4G and 5G network architectures, which has led to many researchers carrying out studies regarding the effects of the atmosphere on radio propagation. There is growing interest in the use of millimetre-wave spectrum as a potential candidate for the provision of high capacity, short range, and backhaul solutions within future 5G ultra-dense network infrastructures. However, these frequencies are highly susceptible to atmospheric conditions and therefore a more detailed understanding of such behaviour is required. This research presents results from a one-year trial of a 60GHz short-range point-to-point link test between two building rooftops at the University of Salford, UK. In this research, a short-range 60GHz radio link measures power attenuations in millimetre-wave ranges with simultaneous measurement of weather parameters. The results obtained confirm a strong correlation between path-loss and the impact of rain and atmospheric gases as predicted by the ITU path-loss model but also highlight a discrepancy. Further analysis revealed that rain duration appears to be having a detrimental effect on link performance. The experimental data from this trial is presented as evidence of the potential impact of rain at 60GHz.The results also confirm the attenuation due to atmospheric gases (Oxygen absorption and water vapour) agree with the attenuation calculations from ITU recommendation for atmospheric gases. The results having considered impacts due to atmospheric gases and rain as per the ITU recommendations, there is a general residue of between 1dB and 2dB path loss throughout the month, interspersed by definite larger peaks ranging from 3dB to 9dB. The extra 3dB to 9dB of residual path loss, is unaccounted for by the ITU path-loss model. The analysis and discussion of measurement results are presented. The results also confirm that the link throughput can be maintained except in the most extreme weather conditions

    Caracterização não-linear de agregados de antenas para aplicações 5G

    Get PDF
    The present mobile scenario demands are stretching the existing telecom infrastructure to the limit. New technologies centred around antenna arrays and spatial multiplexing have been proposed to overcome the challenges imposed by these demands. This work overviews the mobile scenario, scrutinizing demands, presented solutions, challenges and the industry’s perspective of the Fifth Generation of mobile communications. From a careful analysis, the 5G’s most critical radio frequency hardware issues are detailed, and a long-term approach to address them is presented. On the short-term the work focuses on antenna characterization, because antennas are a central part of future wireless communications. Initially, basic antenna concepts are presented, then emphasis is given to microstrip antennas, going through all the steps of designing, optimizing and measuring a rectangular microstrip antenna and an eight element linear antenna array for 5.67GHz. Array features such as scanning and source synthesis are also explored. Finally, the impact of signal nonlinear distortion on the antenna array pattern is studied, aiming to expand state-of-the-art knowledge on how signal nonlinear distortion can limit spatial multiplexing. A theoretical model of the phenomenon is proposed and validated both by electromagnetic simulation and measurements.As crescentes exigências das redes móveis estão a levar a infraestrutura de telecomunicações ao seu limite. Novas tecnologias centradas em agregados de antenas e multiplexagem espacial têm sido propostas para ultrapassar os desafios impostos por tais exigências. Este trabalho apresenta uma visão abrangente das redes móveis atuais, escrutinando as suas exigências, as soluções apresentadas, os desafios adjacentes, bem como a opinião da indústria. Os problemas mais crı́ticos do hardware de radio frequência para a quinta geração de redes móveis são apurados a partir de uma análise detalhada do cenário das redes sem fios, sendo apresentado um plano a longo prazo para abordar estas problemáticas. A curto prazo o trabalho foca-se em caracterização de antenas, visto que as antenas são um ponto central nas comunicações sem fios do futuro. Inicialmente são apresentados conceitos básicos sobre antenas, dando-se de seguida ênfase às antenas microstrip, sendo apresentado todo o processo de sı́ntese, otimização e caracterização de uma antena microstrip retangular e de um agregado de antenas linear de oito elementos com frequência de operação 5.67GHz. Neste âmbito, algumas propriedades dos agregados, como o varrimento angular do feixe eletromagnético e técnicas de sı́ntese de fonte eletromagnética, são também exploradas. Finalmente, apresenta-se um estudo sobre o impacto que a distorção não linear de sinal pode ter no diagrama de radiação do agregado de antenas. O objetivo é expandir os conhecimentos do estado-da-arte acerca das limitações que a distorção não linear pode impor na multiplexagem espacial. Neste sentido, um modelo teórico descritivo deste fenómeno é proposto e validado por simulação eletromagnética e por medições experimentais.Mestrado em Engenharia Eletrónica e Telecomunicaçõe

    State-of-the-art assessment of 5G mmWave communications

    Get PDF
    Deliverable D2.1 del proyecto 5GWirelessMain objective of the European 5Gwireless project, which is part of the H2020 Marie Slodowska- Curie ITN (Innovative Training Networks) program resides in the training and involvement of young researchers in the elaboration of future mobile communication networks, focusing on innovative wireless technologies, heterogeneous network architectures, new topologies (including ultra-dense deployments), and appropriate tools. The present Document D2.1 is the first deliverable of Work- Package 2 (WP2) that is specifically devoted to the modeling of the millimeter-wave (mmWave) propagation channels, and development of appropriate mmWave beamforming and signal processing techniques. Deliver D2.1 gives a state-of-the-art on the mmWave channel measurement, characterization and modeling; existing antenna array technologies, channel estimation and precoding algorithms; proposed deployment and networking techniques; some performance studies; as well as a review on the evaluation and analysis toolsPostprint (published version

    Statistical millimeter wave channel modelling for 5G and beyond

    Get PDF
    Millimetre wave (mmWave) wireless communication is one of the most promising technologies for the fifth generation (5G) wireless communication networks and beyond. The very broad bandwidth and directional propagation are the two features of mmWave channels. In order to develop the channel models properly reflecting the characteristics of mmWave channels, the in-depth studies of mmWave channels addressing those two features are required. In this thesis, three mmWave channel models and one beam alignment scheme are proposed related to those two features. First, for studying the very broad bandwidth feature of mmWave channels, we introduce an averaged power delay profile (APDP) method to estimate the frequency stationarity regions (FSRs) of channels. The frequency non-stationary (FnS) properties of channels are found in the data analysis. A FnS model is proposed to model the FnS channels in both the sub-6 GHz and mmWave frequency bands and cluster evolution in the frequency domain is utilised in the implementation of FnS model. Second, for studying the directional propagation feature of mmWave channels, we develop an angular APDP (A-APDP) method to study the planar angular stationarity regions (ASRs) of directional channels (DCs). Three typical directional channel impulse responses (D-CIRs) are found in the data analysis and light-of-sight (LOS), non-LOS (NLOS), and outage classes are used to classify those DCs. A modified Saleh-Valenzuela (SV) model is proposed to model the DCs. The angular domain cluster evolution is utilised to ensure the consistency of DCs. Third, we further extend the A-APDP method to study the spherical-ASRs of DCs. We model the directional mmWave channels by three-state Markov chain that consists of LOS, NLOS, and outage states and we use stationary model, non-stationary model, and “null” to describe the channels in each Markov state according to the estimated ASRs. Then, we propose to use joint channel models to simulate the instantaneous directional mmWave channels based on the limiting distribution of Markov chain. Finally, the directional propagated mmWave channels when the Tx and Rx in motion is addressed. A double Gaussian beams (DGBs) scheme for mobile-to-mobile (M2M) mmWave communications is proposed. The connection ratios of directional mmWave channels in each Markov state are studied
    corecore