4 research outputs found

    Performance Optimization of Network Protocols for IEEE 802.11s-based Smart Grid Communications

    Get PDF
    The transformation of the legacy electric grid to Smart Grid (SG) poses numerous challenges in the design and development of an efficient SG communications network. While there has been an increasing interest in identifying the SG communications network and possible SG applications, specific research challenges at the network protocol have not been elaborated yet. This dissertation revisited each layer of a TCP/IP protocol stack which basically was designed for a wired network and optimized their performance in IEEE 802.11s-based Advanced Metering Infrastructure (AMI) communications network against the following challenges: security and privacy, AMI data explosion, periodic simultaneous data reporting scheduling, poor Transport Control Protocol (TCP) performance, Address Resolution Protocol (ARP) broadcast, and network interoperability. To address these challenges, layered and/or cross-layered protocol improvements were proposed for each layer of TCP/IP protocol stack. At the application layer, a tree-based periodic time schedule and a time division multiple access-based scheduling were proposed to reduce high contention when smart meters simultaneously send their reading. Homomorphic encryption performance was investigated to handle AMI data explosion while providing security and privacy. At the transport layer, a tree-based fixed Retransmission Timeout (RTO) setting and a path-error aware RTO that exploits rich information of IEEE 802.11s data-link layer path selection were proposed to address higher delay due to TCP mechanisms. At the network layer, ARP requests create broadcast storm problems in IEEE 802.11s due to the use of MAC addresses for routing. A secure piggybacking-based ARP was proposed to eliminate this issue. The tunneling mechanisms in the LTE network cause a downlink traffic problem to IEEE 802.11s. For the network interoperability, at the network layer of EPC network, a novel UE access list was proposed to address this issue. At the data-link layer, to handle QoS mismatch between IEEE 802.11s and LTE network, Dual Queues approach was proposed for the Enhanced Distributed Channel Access. The effectiveness of all proposed approaches was validated through extensive simulation experiments using a network simulator. The simulation results showed that the proposed approaches outperformed the traditional TCP/IP protocols in terms of end to end delay, packet delivery ratio, throughput, and collection time

    Wide-Area Time-Synchronized Closed-Loop Control of Power Systems And Decentralized Active Distribution Networks

    Get PDF
    The rapidly expanding power system grid infrastructure and the need to reduce the occurrence of major blackouts and prevention or hardening of systems against cyber-attacks, have led to increased interest in the improved resilience of the electrical grid. Distributed and decentralized control have been widely applied to computer science research. However, for power system applications, the real-time application of decentralized and distributed control algorithms introduce several challenges. In this dissertation, new algorithms and methods for decentralized control, protection and energy management of Wide Area Monitoring, Protection and Control (WAMPAC) and the Active Distribution Network (ADN) are developed to improve the resiliency of the power system. To evaluate the findings of this dissertation, a laboratory-scale integrated Wide WAMPAC and ADN control platform was designed and implemented. The developed platform consists of phasor measurement units (PMU), intelligent electronic devices (IED) and programmable logic controllers (PLC). On top of the designed hardware control platform, a multi-agent cyber-physical interoperability viii framework was developed for real-time verification of the developed decentralized and distributed algorithms using local wireless and Internet-based cloud communication. A novel real-time multiagent system interoperability testbed was developed to enable utility independent private microgrids standardized interoperability framework and define behavioral models for expandability and plug-and-play operation. The state-of-theart power system multiagent framework is improved by providing specific attributes and a deliberative behavior modeling capability. The proposed multi-agent framework is validated in a laboratory based testbed involving developed intelligent electronic device prototypes and actual microgrid setups. Experimental results are demonstrated for both decentralized and distributed control approaches. A new adaptive real-time protection and remedial action scheme (RAS) method using agent-based distributed communication was developed for autonomous hybrid AC/DC microgrids to increase resiliency and continuous operability after fault conditions. Unlike the conventional consecutive time delay-based overcurrent protection schemes, the developed technique defines a selectivity mechanism considering the RAS of the microgrid after fault instant based on feeder characteristics and the location of the IEDs. The experimental results showed a significant improvement in terms of resiliency of microgrids through protection using agent-based distributed communication

    A Heterogeneous Communications Network for Smart Grid by Using the Cost Functions

    Get PDF
    Smart Grids (SG) is an intelligent power grid in which the different SG node types with different communication requirements communicates different types of information with Control Stations (CS). Radio Access Technologies (RATs) due to its advantages are considered as the main access method to be used in order to have bidirectional data transferring between different node types and CS. Besides, spectrum is a rare source and its demand is increasing significantly. Elaborating a heterogeneous in order to fulfill different SG node types communication requirements effectively, is a challenging issue. To find a method to define desirability value of different RAT to support certain node types based on fitness degree between RAT communication characteristics and node type communication requirements is an appropriate solution. This method is implemented by using a comprehensive Cost Function (CF) including a communication CF (CCF) in combination with Energy CF (ECF). The Key Point Indicators which are used in the CCF are SG node type communication requirements. The existing trade of between Eb/N0 and spectral efficiency is considered as ECF. Based on the achieved CCF and ECF and their tradeoffs, SG node types are assigned to different RATs. The proposed assigning method is sensitive to the SG node types densities. The numerical results are achieved by using MATLAB simulation. The other different outcomes of the research output such as cognitive radio in SG and collectors effect number on data aggregation are discussed as well

    Electric vehicle integration in a real-time market

    Get PDF
    corecore