156 research outputs found

    Matrix Model of Digital Systems and Its Application to Automatic Test Generation

    Get PDF
    Electrical Engineerin

    A System for the Diagnosis of Faults using a First Principles Approach

    Get PDF
    One of the primary areas of application of Artificial Intelligence is diagnosis. Diagnosis from first principles is a diagnostic technique which uses knowledge of the designed structure and function of a device to determine the possible causes of the malfunction. This work builds on the foundation of a theory of diagnosis by implementing and extending the theory. A correction to the algorithm which defines the theory is presented. The theory is extended for multiple sets of observations of the system and measurement data. A fundamental problem in diagnosis is selecting the measurement which will be of the most benefit in reducing the number of competing diagnoses for a system. A heuristic which selects a component whose measurement is likely to be beneficial in isolating the actual diagnosis is also presented

    A survey of an introduction to fault diagnosis algorithms

    Get PDF
    This report surveys the field of diagnosis and introduces some of the key algorithms and heuristics currently in use. Fault diagnosis is an important and a rapidly growing discipline. This is important in the design of self-repairable computers because the present diagnosis resolution of its fault-tolerant computer is limited to a functional unit or processor. Better resolution is necessary before failed units can become partially reuseable. The approach that holds the greatest promise is that of resident microdiagnostics; however, that presupposes a microprogrammable architecture for the computer being self-diagnosed. The presentation is tutorial and contains examples. An extensive bibliography of some 220 entries is included

    An Integrated Test Plan for an Advanced Very Large Scale Integrated Circuit Design Group

    Get PDF
    VLSI testing poses a number of problems which includes the selection of test techniques, the determination of acceptable fault coverage levels, and test vector generation. Available device test techniques are examined and compared. Design rules should be employed to assure the design is testable. Logic simulation systems and available test utilities are compared. The various methods of test vector generation are also examined. The selection criteria for test techniques are identified. A table of proposed design rules is included. Testability measurement utilities can be used to statistically predict the test generation effort. Field reject rates and fault coverage are statistically related. Acceptable field reject rates can be achieved with less than full test vector fault coverage. The methods and techniques which are examined form the basis of the recommended integrated test plan. The methods of automatic test vector generation are relatively primitive but are improving

    GRASP: a search algorithm for propositional satisfiability

    Full text link

    Generating Circuit Tests by Exploiting Designed Behavior

    Get PDF
    This thesis describes two programs for generating tests for digital circuits that exploit several kinds of expert knowledge not used by previous approaches. First, many test generation problems can be solved efficiently using operation relations, a novel representation of circuit behavior that connects internal component operations with directly executable circuit operations. Operation relations can be computed efficiently by searching traces of simulated circuit behavior. Second, experts write test programs rather than test vectors because programs are more readable and compact. Test programs can be constructed automatically by merging program fragments using expert-supplied goal-refinement rules and domain-independent planning techniques

    Improvement of hardware reliability with aging monitors

    Get PDF
    corecore