330 research outputs found

    A Decomposition Strategy for Optimal Coverage of an Area of Interest using Heterogeneous Team of UAVs

    Get PDF
    In this thesis, we study the problem of optimal search and coverage with heterogeneous team of unmanned aerial vehicles (UAVs). The team must complete the coverage of a given region while minimizing the required time and fuel for performing the mission. Since the UAVs have different characteristics one needs to equalize the ratio of the task to the capabilities of each agent to obtain an optimal solution. A multi-objective task assignment framework is developed for finding the best group of agents that by assigning the optimal tasks would carry out the mission with minimum total cost. Once the optimal tasks for UAVs are obtained, the coverage area (map) is partitioned according to the results of the multi-objective task assignment. The strategy is to partition the coverage area into separate regions so that each agent is responsible for performing the surveillance of its particular region. The decentralized power diagram algorithm is used to partition the map according to the results of the task assignment phase. Furthermore, a framework for solving the task assignment problem and the coverage area partitioning problem in parallel is proposed. A criterion for achieving the minimum number of turns in covering a region a with single UAV is studied for choosing the proper path direction for each UAV. This criterion is extended to develop a method for partitioning the coverage area among multiple UAVs that minimizes the number of turns. We determine the "best" team for performing the coverage mission and we find the optimal workload for each agent that is involved in the mission through a multi-objective optimization procedure. The search area is then partitioned into disjoint subregions, and each agent is assigned to a region having an optimum area resulting in the minimum cost for the entire surveillance mission

    Coverage Path Planning for Autonomous Robots

    Get PDF
    Coverage Path Planning (CPP) is a problem of path computation with minimal length that guarantees to scan the entire area of interest. CPP finds its application in diverse fields like cartography, inspection, precision agriculture, milling, and demining. However, this thesis is a prominent step to solve CPP for real-world problems where environment poses multiple challenges. At first, four significant and pressing challenges for CPP in extreme environment are identified. Each challenge is formulated as a problem and its solution has been presented as a dedicated chapter in this thesis. The first problem, Goal-Oriented Sensor based CPP, focuses on cumbersome tasks like Nuclear Decommissioning, where the robot covers an abandoned site in tandem with the goal to reach a static target in minimal time. To meet the grave speeding-up challenge, a novel offline-online strategy is proposed that efficiently models the site using floor plans and grid maps as a priori information. The proposed strategy outperforms the two baseline approaches with reduction in coverage time by 45%- 82%. The second problem explores CPP of distributed regions, applicable in post-disaster scenarios like Fukushima Daiichi. Experiments are conducted at radiation laboratory to identify the constraints robot would be subjected to. The thesis is successfully able to diagnose transient damage in the robot’s sensor after 3 Gy of gamma radiation exposure. Therefore, a region order travel constraint known as Precedence Provision is imposed for successful coverage. The region order constraint allows the coverage length to be minimised by 65% in comparison to state-of-the-art techniques. The third problem identifies the major bottleneck of limited on-board energy that inhibits complete coverage of distributed regions. The existing approaches allow robots to undertake multiple tours for complete coverage which is impractical in many scenarios. To this end, a novel algorithm is proposed that solves a variant of CPP where the robot aims to achieve near-optimal area coverage due to path length limitation caused by the energy constraint. The proposed algorithm covers 23% - 35% more area in comparison to the state-of-the-art approaches. Finally, the last problem, an extension of the second and third problems, deals with the problem of CPP over a set of disjoint regions using a fleet of heterogeneous aerial robots. A heuristic is proposed to deliver solutions within acceptable time limits. The experiments demonstrate that the proposed heuristic solution reduces the energy cost by 15-40% in comparison to the state-of-the art solutions

    Path-Planning for optimal coverage under security constraints

    Get PDF
    Treball fet a la Technische Universität Berlin. Fakultät Elektrotechnik und Informatik[ANGLÈS] In recent years, three-dimensional building reconstruction has been an active area of research, partly motivated by the spread of low cost unmanned aerial vehicles platforms. These permit exploiting the entire three-dimensional space as long as it is free of obstacles. Current approaches manually plan a set of viewpoints from which to conduct multiple scans of a target building, and then later select the best ones to use in a structure from motion system. This procedure often has two problems: some parts are covered with low detail or some parts are evenly uncovered. In these situations, an automatic view planner is necessary; it will completely cover a building surface, while reducing time and cost of the overall process. This thesis presents an automatic view planner for three-dimensional building reconstruction based on dividing edifices into several slices and for each one solve a two-dimensional problem. From a rough model of the environment and a desired detail level, both described in a cost function, the system computes a route in which there is a set of viewpoints to completely cover a target building surface of any shape, taking into account that there may be obstacles in the environment. The final route is proposed to be followed by an unmanned aerial vehicle equipped with a digital camera.[CASTELLÀ] En los últimos años, la reconstrucción 3D de edificios ha sido un área activa de investigación, en parte motivada por la difusión de plataformas económicas de unmanned aerial vehicles. Estos permiten explotar completamente el espacio 3D mientras esté libre de obstáculos. Las soluciones actuales planean manualmente una serie de puntos desde donde realizar escaneos de un edificio objetivo, para luego seleccionar los mejores para utilizar en un sistema structure from motion. Este procedimiento a menudo tiene dos grandes problemas: algunas partes del edificio se cubren con bajo detalle u otras partes incluso no se cubren. En estas situaciones un view planner automático es necesario. Este cubrirá completamente la superficie del edificio, a la vez que reducirá costes y tiempo en el proceso global. Este proyecto presenta un view planner automático para la reconstrucción 3D de edificios basado en dividir estos en rebanadas y para cada una resolver un problema en 2D. A partir de un modelo en bruto de la escena, y un detalle deseado, ambos descritos en una función de coste, el sistema calcula una ruta en la que hay una serie de puntos que cubren completamente la superficie de un edificio objetivo de cualquier forma, teniendo en cuenta que puede haber obstáculos en la escena. La idea es que un unmanned aerial vehicle equipado con una cámara digital siga el camino final diseñado.[CATALÀ] Els darrers anys, la reconstrucció 3D d’edificis ha estat una área activa de recerca, en part motivada per la difusió de plataformes econòmiques de unmanned aerial vehicles. Aquests permeten explotar completament l’espai 3D mentres estigui lliure d’obstacles. Les solucions actuals planegen manualment una sèrie de punts des don realitzar escanejos d’un edifici objectiu, per després seleccionar els millors per a utilitzar en un sistema structure from motion. Aquest procediment sovint té dos grans problemes: algunes parts de l’edifici es cobreixen amb baix detall o altres parts inclús no es cobreixen. En aquestes situacions un view planner automàtic es necessari. Aquest cobrirà completament la superfície de l’edifici, a la vegada que reduirà costos i temps en el procés global. Aquest projecte presenta un view planner automàtic per a la reconstrucció 3D d’edificis basat en dividir aquests en llesques i per a cada una resoldre un problema en 2D. A partir d’un model en brut de l’escena, i un detall desitjat, ambdós descrits en una funció de cost, el sistema calcula una ruta en la qual hi ha una serie de punts que cobriran completament la superfície d’un edifici objectiu de qualsevol forma, tenint en compte que hi poden haver obstacles a l’escena. La idea es que un unmanned aerial vehicle equipat amb una càmera digital segueixi el camí final dissenyat

    Distributed approaches for coverage missions with multiple heterogeneous UAVs for coastal areas.

    Get PDF
    This Thesis focuses on a high-level framework proposal for heterogeneous aerial, fixed wing teams of robots, which operate in complex coastal areas. Recent advances in the computational capabilities of modern processors along with the decrement of small scale aerial platform manufacturing costs, have given researchers the opportunity to propose efficient and low-cost solutions to a wide variety of problems. Regarding marine sciences and more generally coastal or sea operations, the use of aerial robots brings forth a number of advantages, including information redundancy and operator safety. This Thesis initially deals with complex coastal decomposition in relation with a vehicles’ on-board sensor. This decomposition decreases the computational complexity of planning a flight path, while respecting various aerial or ground restrictions. The sensor-based area decomposition also facilitates a team-wide heterogeneous solution for any team of aerial vehicles. Then, it proposes a novel algorithmic approach of partitioning any given complex area, for an arbitrary number of Unmanned Aerial Vehicles (UAV). This partitioning schema, respects the relative flight autonomy capabilities of the robots, providing them a corresponding region of interest. In addition, a set of algorithms is proposed for obtaining coverage waypoint plans for those areas. These algorithms are designed to afford the non-holonomic nature of fixed-wing vehicles and the restrictions their dynamics impose. Moreover, this Thesis also proposes a variation of a well-known path tracking algorithm, in order to further reduce the flight error of waypoint following, by introducing intermediate waypoints and providing an autopilot parametrisation. Finally, a marine studies test case of buoy information extraction is presented, demonstrating in that manner the flexibility and modular nature of the proposed framework.Esta tesis se centra en la propuesta de un marco de alto nivel para equipos heterogéneos de robots de ala fija que operan en áreas costeras complejas. Los avances recientes en las capacidades computacionales de los procesadores modernos, junto con la disminución de los costes de fabricación de plataformas aéreas a pequeña escala, han brindado a los investigadores la oportunidad de proponer soluciones eficientes y de bajo coste para enfrentar un amplio abanico de cuestiones. Con respecto a las ciencias marinas y, en términos más generales, a las operaciones costeras o marítimas, el uso de robots aéreos conlleva una serie de ventajas, incluidas la redundancia de la información y la seguridad del operador. Esta tesis trata inicialmente con la descomposición de áreas costeras complejas en relación con el sensor a bordo de un vehículo. Esta descomposición disminuye la complejidad computacional de la planificación de una trayectoria de vuelo, al tiempo que respeta varias restricciones aéreas o terrestres. La descomposición del área basada en sensores también facilita una solución heterogénea para todo el equipo para cualquier equipo de vehículos aéreos. Luego, propone un novedoso enfoque algorítmico de partición de cualquier área compleja dada, para un número arbitrario de vehículos aéreos no tripulados (UAV). Este esquema de partición respeta las capacidades relativas de autonomía de vuelo de los robots, proporcionándoles una región de interés correspondiente. Además, se propone un conjunto de algoritmos para obtener planes de puntos de cobertura para esas áreas. Estos algoritmos están diseñados teniendo en cuenta la naturaleza no holonómica de los vehículos de ala fija y las restricciones que impone su dinámica. En ese sentido, esta Tesis también ofrece una variación de un algoritmo de seguimiento de rutas bien conocido, con el fin de reducir aún más el error de vuelo del siguiente punto de recorrido, introduciendo puntos intermedios y proporcionando una parametrización del piloto automático. Finalmente, se presenta un caso de prueba de estudios marinos de extracción de información de boyas, que demuestra de esa manera la flexibilidad y el carácter modular del marco propuesto

    Coverage Path Planning for a Moving Vehicle

    Get PDF
    A simple coverage plan called a Conformal Lawn Mower plan is demonstrated. This plan enables a UAV to fully cover the route ahead of a moving ground vehicle. The plan requires only limited knowledge of the ground vehicle's future path. For a class of curvature-constrained ground vehicle paths, the proposed plan requires a UAV velocity that is no more than twice the velocity required to cover the optimal plan. Necessary and sufficient UAV velocities, relative to the ground vehicle velocity, required to successfully cover any path in the curvature restricted set are established. In simulation, the proposed plan is validated, showing that the required velocity to provide coverage is strongly related to the curvature of the ground vehicle's path. The results also illustrate the relationship between mapping requirements and the relative velocities of the UAV and ground vehicle. Next, I investigate the challenges involved in providing timely mapping information to a moving ground vehicle where the path of that vehicle is not known in advance. I establish necessary and sufficient UAV velocities, relative to the ground vehicle velocity, required to successfully cover any path the ground vehicle may follow. Finally, I consider a reduced problem for sensor coverage ahead of a moving ground vehicle. Given the ground vehicle route, the UAV planner calculates the regions that must be covered and the time by which each must be covered. The UAV planning problem takes the form of an Orienteering Problem with Time Windows (OPTW). The problem is cast the problem as a Mixed Integer Linear Program (MILP) to find a UAV path that maximizes the area covered within the time constraints dictated by the moving ground vehicle. To improve scalability of the proposed solution, I prove that the optimization can be partitioned into a set of smaller problems, each of which may be solved independently without loss of overall solution optimality. This divide and conquer strategy allows faster solution times, and also provides higher-quality solutions when given a fixed time budget for solving the MILP. We also demonstrate a method of limited loss partitioning, which can perform a trade-off between improved solution time and a bounded objective loss
    • …
    corecore