3,118 research outputs found

    A Mutagenetic Tree Hidden Markov Model for Longitudinal Clonal HIV Sequence Data

    Full text link
    RNA viruses provide prominent examples of measurably evolving populations. In HIV infection, the development of drug resistance is of particular interest, because precise predictions of the outcome of this evolutionary process are a prerequisite for the rational design of antiretroviral treatment protocols. We present a mutagenetic tree hidden Markov model for the analysis of longitudinal clonal sequence data. Using HIV mutation data from clinical trials, we estimate the order and rate of occurrence of seven amino acid changes that are associated with resistance to the reverse transcriptase inhibitor efavirenz.Comment: 20 pages, 6 figure

    A Real-time Global Optimal Path Planning for mobile robot in Dynamic Environment Based on Artificial Immune Approach

    Get PDF
    This paper illustrates a method to finding a globaloptimal path in a dynamic environment of known obstacles foran Mobile Robot (MR) to following a moving target. Firstly, theenvironment is defined by using a practical and standard graphtheory. Then, a suboptimal path is obtained by using DijkstraAlgorithm (DA) that is a standard graph searching method. Theadvantages of using DA are; elimination the uncertainness ofheuristic algorithms and increasing the speed, precision andperformance of them. Finally, Continuous Clonal SelectionAlgorithm (CCSA) that is combined with Negative SelectionAlgorithm (NSA) is used to improve the suboptimal path andderive global optimal path. To show the effectiveness of themethod it is compared with some other methods in this area

    A similarity-based cooperative co-evolutionary algorithm for dynamic interval multi-objective optimization problems

    Get PDF
    The file attached to this record is the author's final peer reviewed version. The Publisher's final version can be found by following the DOI link.Dynamic interval multi-objective optimization problems (DI-MOPs) are very common in real-world applications. However, there are few evolutionary algorithms that are suitable for tackling DI-MOPs up to date. A framework of dynamic interval multi-objective cooperative co-evolutionary optimization based on the interval similarity is presented in this paper to handle DI-MOPs. In the framework, a strategy for decomposing decision variables is first proposed, through which all the decision variables are divided into two groups according to the interval similarity between each decision variable and interval parameters. Following that, two sub-populations are utilized to cooperatively optimize decision variables in the two groups. Furthermore, two response strategies, rgb0.00,0.00,0.00i.e., a strategy based on the change intensity and a random mutation strategy, are employed to rapidly track the changing Pareto front of the optimization problem. The proposed algorithm is applied to eight benchmark optimization instances rgb0.00,0.00,0.00as well as a multi-period portfolio selection problem and compared with five state-of-the-art evolutionary algorithms. The experimental results reveal that the proposed algorithm is very competitive on most optimization instances

    A survey of QoS-aware web service composition techniques

    Get PDF
    Web service composition can be briefly described as the process of aggregating services with disparate functionalities into a new composite service in order to meet increasingly complex needs of users. Service composition process has been accurate on dealing with services having disparate functionalities, however, over the years the number of web services in particular that exhibit similar functionalities and varying Quality of Service (QoS) has significantly increased. As such, the problem becomes how to select appropriate web services such that the QoS of the resulting composite service is maximized or, in some cases, minimized. This constitutes an NP-hard problem as it is complicated and difficult to solve. In this paper, a discussion of concepts of web service composition and a holistic review of current service composition techniques proposed in literature is presented. Our review spans several publications in the field that can serve as a road map for future research

    Use of Metaheuristic Algorithms in Malware Detection

    Get PDF
    Metaheuristic algorithms are the general framework for optimization problems. They are not problem dependent and are heavily deployed in different domains. Due to rise in number of malware, malware detection techniques are updated very often. In the present work different metaheuritics algorithm used in malware detection and are available in the literature are discussed. Metaheuristics algorithm like harmony search, clonal selection, genetic algorithm and Negative selection algorithms are discussed

    Hybrid Honey Bees Mating Optimization Algorithm for Identifying the Near-Optimal Solution in Web Service Composition

    Get PDF
    This paper addresses the problem of optimality in semantic Web service composition by proposing a hybrid nature-inspired method for selecting the optimal or near-optimal solution in semantic Web Service Composition. The method hybridizes the Honey-Bees Mating Optimization algorithm with components inspired from genetic algorithms, reinforcement learning, and tabu search. To prove the necessity of hybridization, we have analyzed comparatively the experimental results provided by our hybrid selection algorithm versus the ones obtained with the classical Honey Bees Mating Optimization algorithm and with the genetic-inspired algorithm of Canfora et al

    Optimal routes scheduling for municipal waste disposal garbage trucks using evolutionary algorithm and artificial immune system

    Get PDF
    This paper describes an application of an evolutionary algorithm and an artificial immune systems to solve a problem of scheduling an optimal route for waste disposal garbage trucks in its daily operation. Problem of an optimisation is formulated and solved using both methods. The results are presented for an area in one of the Polish cities

    A New Approach to Blending and Loading Problem of Molten Aluminum

    Get PDF
    The problems of blending electrolyzer and multi-constraint optimization of electrolytic aluminum scheduling in the electrolytic aluminum production process were addressed. Based on a mathematical model analysis, a novel hybrid optimization algorithm is proposed for optimization of blending together the molten aluminum in different electrolytic cells. An affinity degree function was designed to represent the path of aluminum scheduling. The mutation operators were designed to implement the transformation of electrolyzer combination and change the route of loading. A typical optimization example from an aluminum plant in northwest China is given in this paper, the results of which demonstrate the effectiveness of the proposed method
    corecore