164 research outputs found

    Reitinsuunnittelu määrätyssä järjestyksessä tehtäville peltotöille usean työkoneen yhteistyönä

    Get PDF
    Coverage path planning is the task of finding a collision free path that passes over every point of an area or volume of interest. In agriculture, the coverage task is encountered especially in the process of crop cultivation. Several tasks are performed on the field, one after the other, during the cultivation cycle. Cooperation means that multiple agents, in this case vehicles, are working together towards a common goal. Several studies consider the problem where a single task is divided and assigned among the agents. In this thesis, however, the vehicles have different tasks that are sequentially dependent, that is, the first task must be completed before the other. The tasks are performed simultaneously on the same area. The literature review suggests that there is a lack of previous research on this topic. The objective of this thesis was to develop an algorithm to solve the cooperative coverage path planning problem for sequentially dependent tasks. A tool chain that involves Matlab, Simulink and Visual Studio was adapted for the development and testing of the solution. A development and testing architecture was designed including a compatible interface to a simulation and a real-life test environment. Two different algorithms were implemented based on the idea of computing short simultaneous paths at a time and scheduling them in real-time. The results were successfully demonstrated in a real-life test environment with two tractors equipped with a disc cultivator and a seeder. The objective was to sow the test area. The test drives show that with the algorithms that were developed in this thesis it is possible to perform two sequentially dependent agricultural coverage tasks simultaneously on the same area.Kattavassa reitinsuunnittelussa yritetään löytää polku, jonka aikana määritelty ala tai tilavuus tulee käytyä läpi niin että alueen jokainen piste on käsitelty. Maataloudessa tämä tehtävä on merkityksellinen erityisesti peltoviljelyssä. Useita peltotöitä suoritetaan yksi toisensa jälkeen samalla alueella viljelyvuoden aikana. Useissa tutkimuksissa käsitellään yhteistyönä tehtävää reitinsuunnittelua, jossa yksi tehtävä on jaettu osiin ja osat jaetaan useiden tekijöiden kuten robottien kesken. Tässä diplomityössä peltotyökoneilla on kuitenkin omat erilliset tehtävänsä, joilla on määrätty järjestys, eli niiden suorittaminen riippuu työjärjestyksestä. Työkoneet työskentelevät samanaikaisesti samalla alueella. Diplomityössä tehty kirjallisuuskatsaus viittaa siihen, että vastaavaa aihetta ei ole aiemmin tutkittu. Tämän diplomityön tavoitteena on kehittää algoritmi, jolla voidaan toteuttaa reitinsuunnittelu määrätyssä järjestyksessä tehtäville peltotöille usean peltotyökoneen yhteistyönä. Algoritmikehitystä ja testausta varten suunniteltiin yhtenäinen rajapinta, jolla algoritmia voitaisiin testata sekä simulaatiossa että todellisessa testitilanteessa. Algoritmikehityksessä käytettiin työkaluina Matlab, Simulink ja Visual Studio -ohjelmia. Työssä toteutettiin kaksi algoritmia, jotka perustuvat samaan ideaan: suunnitellaan kerrallaan kaksi lyhyttä samanaikaista polkua, jotka ajoitetaan reaaliajassa. Algoritmeja testattiin todellisessa testiympäristössä kahden työkoneen yhteistyönä, kun tavoitteena on kylvää koko testialue. Ensimmäinen työvaihe suoritettiin lautasmuokkaimella ja toinen kylvökoneella. Testiajot osoittavat, että diplomityössä kehitetyillä algoritmeilla voidaan ohjata kahden toisistaan riippuvaisen peltotyön toteutus samanaikaisesti samalla peltoalueella

    Distributed approaches for coverage missions with multiple heterogeneous UAVs for coastal areas.

    Get PDF
    This Thesis focuses on a high-level framework proposal for heterogeneous aerial, fixed wing teams of robots, which operate in complex coastal areas. Recent advances in the computational capabilities of modern processors along with the decrement of small scale aerial platform manufacturing costs, have given researchers the opportunity to propose efficient and low-cost solutions to a wide variety of problems. Regarding marine sciences and more generally coastal or sea operations, the use of aerial robots brings forth a number of advantages, including information redundancy and operator safety. This Thesis initially deals with complex coastal decomposition in relation with a vehicles’ on-board sensor. This decomposition decreases the computational complexity of planning a flight path, while respecting various aerial or ground restrictions. The sensor-based area decomposition also facilitates a team-wide heterogeneous solution for any team of aerial vehicles. Then, it proposes a novel algorithmic approach of partitioning any given complex area, for an arbitrary number of Unmanned Aerial Vehicles (UAV). This partitioning schema, respects the relative flight autonomy capabilities of the robots, providing them a corresponding region of interest. In addition, a set of algorithms is proposed for obtaining coverage waypoint plans for those areas. These algorithms are designed to afford the non-holonomic nature of fixed-wing vehicles and the restrictions their dynamics impose. Moreover, this Thesis also proposes a variation of a well-known path tracking algorithm, in order to further reduce the flight error of waypoint following, by introducing intermediate waypoints and providing an autopilot parametrisation. Finally, a marine studies test case of buoy information extraction is presented, demonstrating in that manner the flexibility and modular nature of the proposed framework.Esta tesis se centra en la propuesta de un marco de alto nivel para equipos heterogéneos de robots de ala fija que operan en áreas costeras complejas. Los avances recientes en las capacidades computacionales de los procesadores modernos, junto con la disminución de los costes de fabricación de plataformas aéreas a pequeña escala, han brindado a los investigadores la oportunidad de proponer soluciones eficientes y de bajo coste para enfrentar un amplio abanico de cuestiones. Con respecto a las ciencias marinas y, en términos más generales, a las operaciones costeras o marítimas, el uso de robots aéreos conlleva una serie de ventajas, incluidas la redundancia de la información y la seguridad del operador. Esta tesis trata inicialmente con la descomposición de áreas costeras complejas en relación con el sensor a bordo de un vehículo. Esta descomposición disminuye la complejidad computacional de la planificación de una trayectoria de vuelo, al tiempo que respeta varias restricciones aéreas o terrestres. La descomposición del área basada en sensores también facilita una solución heterogénea para todo el equipo para cualquier equipo de vehículos aéreos. Luego, propone un novedoso enfoque algorítmico de partición de cualquier área compleja dada, para un número arbitrario de vehículos aéreos no tripulados (UAV). Este esquema de partición respeta las capacidades relativas de autonomía de vuelo de los robots, proporcionándoles una región de interés correspondiente. Además, se propone un conjunto de algoritmos para obtener planes de puntos de cobertura para esas áreas. Estos algoritmos están diseñados teniendo en cuenta la naturaleza no holonómica de los vehículos de ala fija y las restricciones que impone su dinámica. En ese sentido, esta Tesis también ofrece una variación de un algoritmo de seguimiento de rutas bien conocido, con el fin de reducir aún más el error de vuelo del siguiente punto de recorrido, introduciendo puntos intermedios y proporcionando una parametrización del piloto automático. Finalmente, se presenta un caso de prueba de estudios marinos de extracción de información de boyas, que demuestra de esa manera la flexibilidad y el carácter modular del marco propuesto

    Planning Algorithms for Multi-Robot Active Perception

    Get PDF
    A fundamental task of robotic systems is to use on-board sensors and perception algorithms to understand high-level semantic properties of an environment. These semantic properties may include a map of the environment, the presence of objects, or the parameters of a dynamic field. Observations are highly viewpoint dependent and, thus, the performance of perception algorithms can be improved by planning the motion of the robots to obtain high-value observations. This motivates the problem of active perception, where the goal is to plan the motion of robots to improve perception performance. This fundamental problem is central to many robotics applications, including environmental monitoring, planetary exploration, and precision agriculture. The core contribution of this thesis is a suite of planning algorithms for multi-robot active perception. These algorithms are designed to improve system-level performance on many fronts: online and anytime planning, addressing uncertainty, optimising over a long time horizon, decentralised coordination, robustness to unreliable communication, predicting plans of other agents, and exploiting characteristics of perception models. We first propose the decentralised Monte Carlo tree search algorithm as a generally-applicable, decentralised algorithm for multi-robot planning. We then present a self-organising map algorithm designed to find paths that maximally observe points of interest. Finally, we consider the problem of mission monitoring, where a team of robots monitor the progress of a robotic mission. A spatiotemporal optimal stopping algorithm is proposed and a generalisation for decentralised monitoring. Experimental results are presented for a range of scenarios, such as marine operations and object recognition. Our analytical and empirical results demonstrate theoretically-interesting and practically-relevant properties that support the use of the approaches in practice

    Spatial Model Predictive Control for Smooth and Accurate Steering of an Autonomous Truck

    Full text link
    corecore