13,342 research outputs found

    Open source environment to define constraints in route planning for GIS-T

    Get PDF
    Route planning for transportation systems is strongly related to shortest path algorithms, an optimization problem extensively studied in the literature. To find the shortest path in a network one usually assigns weights to each branch to represent the difficulty of taking such branch. The weights construct a linear preference function ordering the variety of alternatives from the most to the least attractive.Postprint (published version

    Compute and Visualize Discontinuity Among Neighboring Integral Curves of 2D Vector Fields

    Get PDF

    Abstract visualization of large-scale time-varying data

    Get PDF
    The explosion of large-scale time-varying datasets has created critical challenges for scientists to study and digest. One core problem for visualization is to develop effective approaches that can be used to study various data features and temporal relationships among large-scale time-varying datasets. In this dissertation, we first present two abstract visualization approaches to visualizing and analyzing time-varying datasets. The first approach visualizes time-varying datasets with succinct lines to represent temporal relationships of the datasets. A time line visualizes time steps as points and temporal sequence as a line. They are generated by sampling the distributions of virtual words across time to study temporal features. The key idea of time line is to encode various data properties with virtual words. We apply virtual words to characterize feature points and use their distribution statistics to measure temporal relationships. The second approach is ensemble visualization, which provides a highly abstract platform for visualizing an ensemble of datasets. Both approaches can be used for exploration, analysis, and demonstration purposes. The second component of this dissertation is an animated visualization approach to study dramatic temporal changes. Animation has been widely used to show trends, dynamic features and transitions in scientific simulations, while animated visualization is new. We present an automatic animation generation approach that simulates the composition and transition of storytelling techniques and synthesizes animations to describe various event features. We also extend the concept of animated visualization to non-traditional time-varying datasets--network protocols--for visualizing key information in abstract sequences. We have evaluated the effectiveness of our animated visualization with a formal user study and demonstrated the advantages of animated visualization for studying time-varying datasets

    Visualization for the Physical Sciences

    Get PDF

    Interactive Visualization of Molecular Dynamics Simulation Data

    Get PDF
    Molecular Dynamics Simulations (MD) plays an essential role in the field of computational biology. The simulations produce extensive high-dimensional, spatio-temporal data describ-ing the motion of atoms and molecules. A central challenge in the field is the extraction and visualization of useful behavioral patterns from these simulations. Throughout this thesis, I collaborated with a computational biologist who works on Molecular Dynamics (MD) Simu-lation data. For the sake of exploration, I was provided with a large and complex membrane simulation. I contributed solutions to his data challenges by developing a set of novel visual-ization tools to help him get a better understanding of his simulation data. I employed both scientific and information visualization, and applied concepts of abstraction and dimensions projection in the proposed solutions. The first solution enables the user to interactively fil-ter and highlight dynamic and complex trajectory constituted by motions of molecules. The molecular dynamic trajectories are identified based on path length, edge length, curvature, and normalized curvature, and their combinations. The tool exploits new interactive visual-ization techniques and provides a combination of 2D-3D path rendering in a dual dimension representation to highlight differences arising from the 2D projection on a plane. The sec-ond solution introduces a novel abstract interaction space for Protein-Lipid interaction. The proposed solution addresses the challenge of visualizing complex, time-dependent interactions between protein and lipid molecules. It also proposes a fast GPU-based implementation that maps lipid-constituents involved in the interaction onto the abstract protein interaction space. I also introduced two abstract level-of-detail (LoD) representations with six levels of detail for lipid molecules and protein interaction. Finally, I proposed a novel framework consisting of four linked views: A time-dependent 3D view, a novel hybrid view, a clustering timeline, and a details-on-demand window. The framework exploits abstraction and projection to enable the user to study the molecular interaction and the behavior of the protein-protein interaction and clusters. I introduced a selection of visual designs to convey the behavior of protein-lipid interaction and protein-protein interaction through a unified coordinate system. Abstraction is used to present proteins in hybrid 2D space, and a projected tiled space is used to present both Protein-Lipid Interaction (PLI) and Protein-Protein Interaction (PPI) at the particle level in a heat-map style visual design. Glyphs are used to represent PPI at the molecular level. I coupled visually separable visual designs in a unified coordinate space. The result lets the user study both PLI and PPI separately, or together in a unified visual analysis framework
    • …
    corecore