16,462 research outputs found

    A Survey of Positioning Systems Using Visible LED Lights

    Get PDF
    © 2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.As Global Positioning System (GPS) cannot provide satisfying performance in indoor environments, indoor positioning technology, which utilizes indoor wireless signals instead of GPS signals, has grown rapidly in recent years. Meanwhile, visible light communication (VLC) using light devices such as light emitting diodes (LEDs) has been deemed to be a promising candidate in the heterogeneous wireless networks that may collaborate with radio frequencies (RF) wireless networks. In particular, light-fidelity has a great potential for deployment in future indoor environments because of its high throughput and security advantages. This paper provides a comprehensive study of a novel positioning technology based on visible white LED lights, which has attracted much attention from both academia and industry. The essential characteristics and principles of this system are deeply discussed, and relevant positioning algorithms and designs are classified and elaborated. This paper undertakes a thorough investigation into current LED-based indoor positioning systems and compares their performance through many aspects, such as test environment, accuracy, and cost. It presents indoor hybrid positioning systems among VLC and other systems (e.g., inertial sensors and RF systems). We also review and classify outdoor VLC positioning applications for the first time. Finally, this paper surveys major advances as well as open issues, challenges, and future research directions in VLC positioning systems.Peer reviewe

    Interactive Planning and Sensing for Aircraft in Uncertain Environments with Spatiotemporally Evolving Threats

    Get PDF
    Autonomous aerial, terrestrial, and marine vehicles provide a platform for several applications including cargo transport, information gathering, surveillance, reconnaissance, and search-and-rescue. To enable such applications, two main technical problems are commonly addressed.On the one hand, the motion-planning problem addresses optimal motion to a destination: an application example is the delivery of a package in the shortest time with least fuel. Solutions to this problem often assume that all relevant information about the environment is available, possibly with some uncertainty. On the other hand, the information gathering problem addresses the maximization of some metric of information about the environment: application examples include such as surveillance and environmental monitoring. Solutions to the motion-planning problem in vehicular autonomy assume that information about the environment is available from three sources: (1) the vehicle’s own onboard sensors, (2) stationary sensor installations (e.g. ground radar stations), and (3) other information gathering vehicles, i.e., mobile sensors, especially with the recent emphasis on collaborative teams of autonomous vehicles with heterogeneous capabilities. Each source typically processes the raw sensor data via estimation algorithms. These estimates are then available to a decision making system such as a motion- planning algorithm. The motion-planner may use some or all of the estimates provided. There is an underlying assumption of “separation� between the motion-planning algorithm and the information about environment. This separation is common in linear feedback control systems, where estimation algorithms are designed independent of control laws, and control laws are designed with the assumption that the estimated state is the true state. In the case of motion-planning, there is no reason to believe that such a separation between the motion-planning algorithm and the sources of estimated environment information will lead to optimal motion plans, even if the motion planner and the estimators are themselves optimal. The goal of this dissertation is to investigate whether the removal of this separation, via interactive motion-planning and sensing, can significantly improve the optimality of motion- planning. The major contribution of this work is interactive planning and sensing. We consider the problem of planning the path of a vehicle, which we refer to as the actor, to traverse a threat field with minimum threat exposure. The threat field is an unknown, time- variant, and strictly positive scalar field defined on a compact 2D spatial domain – the actor’s workspace. The threat field is estimated by a network of mobile sensors that can measure the threat field pointwise. All measurements are noisy. The objective is to determine a path for the actor to reach a desired goal with minimum risk, which is a measure sensitive not only to the threat exposure itself, but also to the uncertainty therein. A novelty of this problem setup is that the actor can communicate with the sensor network and request that the sensors position themselves in a procedure we call sensor reconfiguration such that the actor’s risk is minimized. This work continues with a foundation in motion planning in time-varying fields where waiting is a control input. Waiting is examined in the context of finding an optimal path with considerations for the cost of exposure to a threat field, the cost of movement, and the cost of waiting. For example, an application where waiting may be beneficial in motion-planning is the delivery of a package where adverse weather may pose a risk to the safety of a UAV and its cargo. In such scenarios, an optimal plan may include “waiting until the storm passes.� Results on computational efficiency and optimality of considering waiting in path- planning algorithms are presented. In addition, the relationship of waiting in a time- varying field represented with varying levels of resolution, or multiresolution is studied. Interactive planning and sensing is further developed for the case of time-varying environments. This proposed extension allows for the evaluation of different mission windows, finite sensor network reconfiguration durations, finite planning durations, and varying number of available sensors. Finally, the proposed method considers the effect of waiting in the path planner under the interactive planning and sensing for time-varying fields framework. Future work considers various extensions of the proposed interactive planning and sensing framework including: generalizing the environment using Gaussian processes, sensor reconfiguration costs, multiresolution implementations, nonlinear parameters, decentralized sensor networks and an application to aerial payload delivery by parafoil

    Utilization Of A Large-Scale Wireless Sensor Network For Intrusion Detection And Border Surveillance

    Get PDF
    To control the border more effectively, countries may deploy a detection system that enables real-time surveillance of border integrity. Events such as border crossings need to be monitored in real time so that any border entries can be noted by border security forces and destinations marked for apprehension. Wireless Sensor Networks (WSNs) are promising for border security surveillance because they enable enforcement teams to monitor events in the physical environment. In this work, probabilistic models have been presented to investigate senor development schemes while considering the environmental factors that affect the sensor performance. Simulation studies have been carried out using the OPNET to verify the theoretical analysis and to find an optimal node deployment scheme that is robust and efficient by incorporating geographical coordination in the design. Measures such as adding camera and range-extended antenna to each node have been investigated to improve the system performance. A prototype WSN based surveillance system has been developed to verify the proposed approach
    • …
    corecore