24 research outputs found

    Multi-Modal Detection and Mapping of Static and Dynamic Obstacles in Agriculture for Process Evaluation

    Get PDF
    Korthals T, Kragh M, Christiansen P, Karstoft H, Jørgensen RN, Rückert U. Multi-Modal Detection and Mapping of Static and Dynamic Obstacles in Agriculture for Process Evaluation. Frontiers in Robotics and AI. 2018;5: 26.Today, agricultural vehicles are available that can automatically perform tasks such as weed detection and spraying, mowing, and sowing while being steered automatically. However, for such systems to be fully autonomous and self-driven, not only their specific agricultural tasks must be automated. An accurate and robust perception system automatically detecting and avoiding all obstacles must also be realized to ensure safety of humans, animals, and other surroundings. In this paper, we present a multi-modal obstacle and environment detection and recognition approach for process evaluation in agricultural fields. The proposed pipeline detects and maps static and dynamic obstacles globally, while providing process-relevant information along the traversed trajectory. Detection algorithms are introduced for a variety of sensor technologies, including range sensors (lidar and radar) and cameras (stereo and thermal). Detection information is mapped globally into semantical occupancy grid maps and fused across all sensors with late fusion, resulting in accurate traversability assessment and semantical mapping of process-relevant categories (e.g., crop, ground, and obstacles). Finally, a decoding step uses a Hidden Markov model to extract relevant process-specific parameters along the trajectory of the vehicle, thus informing a potential control system of unexpected structures in the planned path. The method is evaluated on a public dataset for multi-modal obstacle detection in agricultural fields. Results show that a combination of multiple sensor modalities increases detection performance and that different fusion strategies must be applied between algorithms detecting similar and dissimilar classes

    Lidar-based Obstacle Detection and Recognition for Autonomous Agricultural Vehicles

    Get PDF
    Today, agricultural vehicles are available that can drive autonomously and follow exact route plans more precisely than human operators. Combined with advancements in precision agriculture, autonomous agricultural robots can reduce manual labor, improve workflow, and optimize yield. However, as of today, human operators are still required for monitoring the environment and acting upon potential obstacles in front of the vehicle. To eliminate this need, safety must be ensured by accurate and reliable obstacle detection and avoidance systems.In this thesis, lidar-based obstacle detection and recognition in agricultural environments has been investigated. A rotating multi-beam lidar generating 3D point clouds was used for point-wise classification of agricultural scenes, while multi-modal fusion with cameras and radar was used to increase performance and robustness. Two research perception platforms were presented and used for data acquisition. The proposed methods were all evaluated on recorded datasets that represented a wide range of realistic agricultural environments and included both static and dynamic obstacles.For 3D point cloud classification, two methods were proposed for handling density variations during feature extraction. One method outperformed a frequently used generic 3D feature descriptor, whereas the other method showed promising preliminary results using deep learning on 2D range images. For multi-modal fusion, four methods were proposed for combining lidar with color camera, thermal camera, and radar. Gradual improvements in classification accuracy were seen, as spatial, temporal, and multi-modal relationships were introduced in the models. Finally, occupancy grid mapping was used to fuse and map detections globally, and runtime obstacle detection was applied on mapped detections along the vehicle path, thus simulating an actual traversal.The proposed methods serve as a first step towards full autonomy for agricultural vehicles. The study has thus shown that recent advancements in autonomous driving can be transferred to the agricultural domain, when accurate distinctions are made between obstacles and processable vegetation. Future research in the domain has further been facilitated with the release of the multi-modal obstacle dataset, FieldSAFE

    Context Exploitation in Data Fusion

    Get PDF
    Complex and dynamic environments constitute a challenge for existing tracking algorithms. For this reason, modern solutions are trying to utilize any available information which could help to constrain, improve or explain the measurements. So called Context Information (CI) is understood as information that surrounds an element of interest, whose knowledge may help understanding the (estimated) situation and also in reacting to that situation. However, context discovery and exploitation are still largely unexplored research topics. Until now, the context has been extensively exploited as a parameter in system and measurement models which led to the development of numerous approaches for the linear or non-linear constrained estimation and target tracking. More specifically, the spatial or static context is the most common source of the ambient information, i.e. features, utilized for recursive enhancement of the state variables either in the prediction or the measurement update of the filters. In the case of multiple model estimators, context can not only be related to the state but also to a certain mode of the filter. Common practice for multiple model scenarios is to represent states and context as a joint distribution of Gaussian mixtures. These approaches are commonly referred as the join tracking and classification. Alternatively, the usefulness of context was also demonstrated in aiding the measurement data association. Process of formulating a hypothesis, which assigns a particular measurement to the track, is traditionally governed by the empirical knowledge of the noise characteristics of sensors and operating environment, i.e. probability of detection, false alarm, clutter noise, which can be further enhanced by conditioning on context. We believe that interactions between the environment and the object could be classified into actions, activities and intents, and formed into structured graphs with contextual links translated into arcs. By learning the environment model we will be able to make prediction on the target\u2019s future actions based on its past observation. Probability of target future action could be utilized in the fusion process to adjust tracker confidence on measurements. By incorporating contextual knowledge of the environment, in the form of a likelihood function, in the filter measurement update step, we have been able to reduce uncertainties of the tracking solution and improve the consistency of the track. The promising results demonstrate that the fusion of CI brings a significant performance improvement in comparison to the regular tracking approaches

    Mobility mining for time-dependent urban network modeling

    Get PDF
    170 p.Mobility planning, monitoring and analysis in such a complex ecosystem as a city are very challenging.Our contributions are expected to be a small step forward towards a more integrated vision of mobilitymanagement. The main hypothesis behind this thesis is that the transportation offer and the mobilitydemand are greatly coupled, and thus, both need to be thoroughly and consistently represented in a digitalmanner so as to enable good quality data-driven advanced analysis. Data-driven analytics solutions relyon measurements. However, sensors do only provide a measure of movements that have already occurred(and associated magnitudes, such as vehicles per hour). For a movement to happen there are two mainrequirements: i) the demand (the need or interest) and ii) the offer (the feasibility and resources). Inaddition, for good measurement, the sensor needs to be located at an adequate location and be able tocollect data at the right moment. All this information needs to be digitalised accordingly in order to applyadvanced data analytic methods and take advantage of good digital transportation resource representation.Our main contributions, focused on mobility data mining over urban transportation networks, can besummarised in three groups. The first group consists of a comprehensive description of a digitalmultimodal transport infrastructure representation from global and local perspectives. The second groupis oriented towards matching diverse sensor data onto the transportation network representation,including a quantitative analysis of map-matching algorithms. The final group of contributions covers theprediction of short-term demand based on various measures of urban mobility

    The 5th Conference of PhD Students in Computer Science

    Get PDF

    Hybrid mapping for static and non-static indoor environments

    Get PDF
    Mención Internacional en el título de doctorIndoor environments populated by humans, such as houses, offices or universities, involve a great complexity due to the diversity of geometries and situations that they may present. Apart from the size of the environment, they can contain multiple rooms distributed into floors and corridors, repetitive structures and loops, and they can get as complicated as one can imagine. In addition, the structure and situations that the environment present may vary over time as objects could be moved, doors can be frequently opened or closed and places can be used for different purposes. Mobile robots need to solve these challenging situations in order to successfully operate in the environment. The main tools that a mobile robot has for dealing with these situations relate to navigation and perception and comprise mapping, localization, path planning and map adaptation. In this thesis, we try to address some of the open problems in robot navigation in non-static indoor environments. We focus on house-like environments as the work is framed into the HEROITEA research project that aims attention at helping elderly people with their everyday-life activities at their homes. This thesis contributes to HEROITEA with a complete robotic mapping system and map adaptation that grants safe navigation and understanding of the environment. Moreover, we provide localization and path planning strategies within the resulting map to further operate in the environment. The first problem tackled in this thesis is robot mapping in static indoor environments. We propose a hybrid mapping method that structures the information gathered from the environment into several maps. The hybrid map contains diverse knowledge of the environment such as its structure, the navigable and blocked paths, and semantic knowledge, such as the objects or scenes in the environment. All this information is separated into different components of the hybrid map that are interconnected so the system can, at any time, benefit from the information contained in every component. In addition to the conceptual conception of the hybrid map, we have also developed building procedures and an exploration algorithm to autonomous build the hybrid map. However, indoor environments populated by humans are far from being static as the environment may change over time. For this reason, the second problem tackled in this thesis is the adaptation of the map to non-static environments. We propose an object-based probabilistic map adaptation that calculates the likelihood of moving or remaining in its place for the different objects in the environment. Finally, a map is just a description of the environment whose importance is mostly related to how the map is used. In addition, map representations are more valuable as long as they offer a wider range of applications. Therefore, the third problem that we approach in this thesis is exploiting the intrinsic characteristics of the hybrid map in order to enhance the performance of localization and path planning methods. The particular objectives of these approaches are precision for robot localization and efficiency for path planning in terms of execution time and traveled distance. We evaluate our proposed methods in a diversity of simulated and real-world indoor environments. In this extensive evaluation, we show that hybrid maps can be efficiently built and maintained over time and they open up for new possibilities for localization and path planning. In this thesis, we show an increase in localization precision and robustness and an improvement in path planning performance. In sum, this thesis makes several contributions in the context of robot navigation in indoor environments, and especially in hybrid mapping. Hybrid maps offer higher efficiency during map building and other applications such as localization and path planning. In addition, we highlight the necessity of dealing with the dynamics of indoor environments and the benefits of combining topological, semantic and metric information to the autonomy of a mobile robot.Los entornos de interiores habitados por personas, como casas, oficinas o universidades, entrañan una gran complejidad por la diversidad de geometrías y situaciones que pueden ocurrir. Aparte de las diferencias en tamaño, estos entornos pueden contener muchas habitaciones organizadas en diferentes plantas o pasillos, pueden presentar estructuras repetitivas o bucles de tal forma que los entornos pueden llegar a ser tan complejos como uno se pueda imaginar. Además, la estructura y el estado del entorno pueden variar con el tiempo, ya que los objetos pueden moverse, las puertas pueden estar cerradas o abiertas y diferentes espacios pueden ser usados para diferentes propósitos. Los robots móviles necesitan resolver estas situaciones difíciles para poder funcionar de una forma satisfactoria. Las principales herramientas que tiene un robot móvil para manejar estas situaciones están relacionadas con la navegación y la percepción y comprenden el mapeado, la localización, la planificación de trayectorias y la adaptación del mapa. En esta tesis, abordamos algunos de los problemas sin resolver de la navegación de robots móviles en entornos de interiores no estáticos. Nos centramos en entornos tipo casa ya que este trabajo se enmarca en el proyecto de investigación HEROITEA que se enfoca en ayudar a personas ancianas en tareas cotidianas del hogar. Esta tesis contribuye al proyecto HEROITEA con un sistema completo de mapeado y adaptación del mapa que asegura una navegación segura y la comprensión del entorno. Además, aportamos métodos de localización y planificación de trayectorias usando el mapa construido para realizar nuevas tareas en el entorno. El primer problema que se aborda en esta tesis es el mapeado de entornos de interiores estáticos por parte de un robot. Proponemos un método de mapeado híbrido que estructura la información capturada en varios mapas. El mapa híbrido contiene información sobre la estructura del entorno, las trayectorias libres y bloqueadas y también incluye información semántica, como los objetos y escenas en el entorno. Toda esta información está separada en diferentes componentes del mapa híbrido que están interconectados de tal forma que el sistema puede beneficiarse en cualquier momento de la información contenida en cada componente. Además de la definición conceptual del mapa híbrido, hemos desarrollado unos procedimientos para construir el mapa y un algoritmo de exploración que permite que esta construcción se realice autónomamente. Sin embargo, los entornos de interiores habitados por personas están lejos de ser estáticos ya que pueden cambiar a lo largo del tiempo. Por esta razón, el segundo problema que intentamos solucionar en esta tesis es la adaptación del mapa para entornos no estáticos. Proponemos un método probabilístico de adaptación del mapa basado en objetos que calcula la probabilidad de que cada objeto en el entorno haya sido movido o permanezca en su posición anterior. Para terminar, un mapa es simplemente una descripción del entorno cuya importancia está principalmente relacionada con su uso. Por ello, los mapas más valiosos serán los que ofrezcan un rango mayor de aplicaciones. Para abordar este asunto, el tercer problema que intentamos solucionar es explotar las características intrínsecas del mapa híbrido para mejorar el desempeño de métodos de localización y de planificación de trayectorias usando el mapa híbrido. El objetivo principal de estos métodos es aumentar la precisión en la localización del robot y la eficiencia en la planificación de trayectorias en relación al tiempo de ejecución y la distancia recorrida. Hemos evaluado los métodos propuestos en una variedad de entornos de interiores simulados y reales. En esta extensa evaluación, mostramos que los mapas híbridos pueden construirse y mantenerse en el tiempo de forma eficiente y que dan lugar a nuevas posibilidades en cuanto a localización y planificación de trayectorias. En esta tesis, mostramos un aumento en la precisión y robustez en la localización y una mejora en el desempeño de la planificación de trayectorias. En resumen, esta tesis lleva a cabo diversas contribuciones en el ámbito de la navegación de robots móviles en entornos de interiores, y especialmente en mapeado híbrido. Los mapas híbridos ofrecen más eficiencia durante la construcción del mapa y en otras tareas como la localización y la planificación de trayectorias. Además, resaltamos la necesidad de tratar los cambios en entornos de interiores y los beneficios de combinar información topológica, semántica y métrica para la autonomía del robot.Programa de Doctorado en Ingeniería Eléctrica, Electrónica y Automática por la Universidad Carlos III de MadridPresidente: Carlos Balaguer Bernaldo de Quirós.- Secretario: Javier González Jiménez.- Vocal: Nancy Marie Amat

    Hierarchische Modelle für das visuelle Erkennen und Lernen von Objekten, Szenen und Aktivitäten

    Get PDF
    In many computer vision applications, objects have to be learned and recognized in images or image sequences. Most of these objects have a hierarchical structure.For example, 3d objects can be decomposed into object parts, and object parts, in turn, into geometric primitives. Furthermore, scenes are composed of objects. And also activities or behaviors can be divided hierarchically into actions, these into individual movements, etc. Hierarchical models are therefore ideally suited for the representation of a wide range of objects used in applications such as object recognition, human pose estimation, or activity recognition. In this work new probabilistic hierarchical models are presented that allow an efficient representation of multiple objects of different categories, scales, rotations, and views. The idea is to exploit similarities between objects, object parts or actions and movements in order to share calculations and avoid redundant information. We will introduce online and offline learning methods, which enable to create efficient hierarchies based on small or large training datasets, in which poses or articulated structures are given by instances. Furthermore, we present inference approaches for fast and robust detection. These new approaches combine the idea of compositional and similarity hierarchies and overcome limitations of previous methods. They will be used in an unified hierarchical framework spatially for object recognition as well as spatiotemporally for activity recognition. The unified generic hierarchical framework allows us to apply the proposed models in different projects. Besides classical object recognition it is used for detection of human poses in a project for gait analysis. The activity detection is used in a project for the design of environments for ageing, to identify activities and behavior patterns in smart homes. In a project for parking spot detection using an intelligent vehicle, the proposed approaches are used to hierarchically model the environment of the vehicle for an efficient and robust interpretation of the scene in real-time.In zahlreichen Computer Vision Anwendungen müssen Objekte in einzelnen Bildern oder Bildsequenzen erlernt und erkannt werden. Viele dieser Objekte sind hierarchisch aufgebaut.So lassen sich 3d Objekte in Objektteile zerlegen und Objektteile wiederum in geometrische Grundkörper. Und auch Aktivitäten oder Verhaltensmuster lassen sich hierarchisch in einzelne Aktionen aufteilen, diese wiederum in einzelne Bewegungen usw. Für die Repräsentation sind hierarchische Modelle dementsprechend gut geeignet. In dieser Arbeit werden neue probabilistische hierarchische Modelle vorgestellt, die es ermöglichen auch mehrere Objekte verschiedener Kategorien, Skalierungen, Rotationen und aus verschiedenen Blickrichtungen effizient zu repräsentieren. Eine Idee ist hierbei, Ähnlichkeiten unter Objekten, Objektteilen oder auch Aktionen und Bewegungen zu nutzen, um redundante Informationen und Mehrfachberechnungen zu vermeiden. In der Arbeit werden online und offline Lernverfahren vorgestellt, die es ermöglichen, effiziente Hierarchien auf Basis von kleinen oder großen Trainingsdatensätzen zu erstellen, in denen Posen und bewegliche Strukturen durch Beispiele gegeben sind. Des Weiteren werden Inferenzansätze zur schnellen und robusten Detektion vorgestellt. Diese werden innerhalb eines einheitlichen hierarchischen Frameworks sowohl räumlich zur Objekterkennung als auch raumzeitlich zur Aktivitätenerkennung verwendet. Das einheitliche Framework ermöglicht die Anwendung des vorgestellten Modells innerhalb verschiedener Projekte. Neben der klassischen Objekterkennung wird es zur Erkennung von menschlichen Posen in einem Projekt zur Ganganalyse verwendet. Die Aktivitätenerkennung wird in einem Projekt zur Gestaltung altersgerechter Lebenswelten genutzt, um in intelligenten Wohnräumen Aktivitäten und Verhaltensmuster von Bewohnern zu erkennen. Im Rahmen eines Projektes zur Parklückenvermessung mithilfe eines intelligenten Fahrzeuges werden die vorgestellten Ansätze verwendet, um das Umfeld des Fahrzeuges hierarchisch zu modellieren und dadurch das Szenenverstehen zu ermöglichen

    Acta Cybernetica : Volume 17. Number 2.

    Get PDF

    Multi-camera multi-object voxel-based Monte Carlo 3D tracking strategies

    Get PDF
    This article presents a new approach to the problem of simultaneous tracking of several people in low-resolution sequences from multiple calibrated cameras. Redundancy among cameras is exploited to generate a discrete 3D colored representation of the scene, being the starting point of the processing chain. We review how the initiation and termination of tracks influences the overall tracker performance, and present a Bayesian approach to efficiently create and destroy tracks. Two Monte Carlo-based schemes adapted to the incoming 3D discrete data are introduced. First, a particle filtering technique is proposed relying on a volume likelihood function taking into account both occupancy and color information. Sparse sampling is presented as an alternative based on a sampling of the surface voxels in order to estimate the centroid of the tracked people. In this case, the likelihood function is based on local neighborhoods computations thus dramatically decreasing the computational load of the algorithm. A discrete 3D re-sampling procedure is introduced to drive these samples along time. Multiple targets are tracked by means of multiple filters, and interaction among them is modeled through a 3D blocking scheme. Tests over CLEAR-annotated database yield quantitative results showing the effectiveness of the proposed algorithms in indoor scenarios, and a fair comparison with other state-of-the-art algorithms is presented. We also consider the real-time performance of the proposed algorithm.Peer ReviewedPostprint (published version
    corecore