45 research outputs found

    Improved stereo matching algorithm based on census transform and dynamic histogram cost computation

    Get PDF
    Stereo matching is a significant subject in the stereo vision algorithm. Traditional taxonomy composition consists of several issues in the stereo correspondences process such as radiometric distortion, discontinuity, and low accuracy at the low texture regions. This new taxonomy improves the local method of stereo matching algorithm based on the dynamic cost computation for disparity map measurement. This method utilised modified dynamic cost computation in the matching cost stage. A modified Census Transform with dynamic histogram is used to provide the cost volume. An adaptive bilateral filtering is applied to retain the image depth and edge information in the cost aggregation stage. A Winner Takes All (WTA) optimisation is applied in the disparity selection and a left-right check with an adaptive bilateral median filtering are employed for final refinement. Based on the dataset of standard Middlebury, the taxonomy has better accuracy and outperformed several other state-of-the-art algorithms

    Constrained Optimization for Plane-Based Stereo

    Get PDF
    This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIP.2018.2823543, IEEE. Personal use of this material is permitted. However, permission to use this material for any other purposes must be obtained from the IEEE by sending an email to [email protected] Hansard was partially supported by EPSRC grant EP/M01469X/1

    Towards Efficient 3D Reconstructions from High-Resolution Satellite Imagery

    Get PDF
    Recent years have witnessed the rapid growth of commercial satellite imagery. Compared with other imaging products, such as aerial or streetview imagery, modern satellite images are captured at high resolution and with multiple spectral bands, thus provide unique viewing angles, global coverage, and frequent updates of the Earth surfaces. With automated processing and intelligent analysis algorithms, satellite images can enable global-scale 3D modeling applications. This dissertation explores computer vision algorithms to reconstruct 3D models from satellite images at different levels: geometric, semantic, and parametric reconstructions. However, reconstructing satellite imagery is particularly challenging for the following reasons: 1) Satellite images typically contain an enormous amount of raw pixels. Efficient algorithms are needed to minimize the substantial computational burden. 2) The ground sampling distances of satellite images are comparatively low. Visual entities, such as buildings, appear visually small and cluttered, thus posing difficulties for 3D modeling. 3) Satellite images usually have complex camera models and inaccurate vendor-provided camera calibrations. Rational polynomial coefficients (RPC) camera models, although widely used, need to be appropriately handled to ensure high-quality reconstructions. To obtain geometric reconstructions efficiently, we propose an edge-aware interpolation-based algorithm to obtain 3D point clouds from satellite image pairs. Initial 2D pixel matches are first established and triangulated to compensate the RPC calibration errors. Noisy dense correspondences can then be estimated by interpolating the inlier matches in an edge-aware manner. After refining the correspondence map with a fast bilateral solver, we can obtain dense 3D point clouds via triangulation. Pixel-wise semantic classification results for satellite images are usually noisy due to the negligence of spatial neighborhood information. Thus, we propose to aggregate multiple corresponding observations of the same 3D point to obtain high-quality semantic models. Instead of just leveraging geometric reconstructions to provide such correspondences, we formulate geometric modeling and semantic reasoning in a joint Markov Random Field (MRF) model. Our experiments show that both tasks can benefit from the joint inference. Finally, we propose a novel deep learning based approach to perform single-view parametric reconstructions from satellite imagery. By parametrizing buildings as 3D cuboids, our method simultaneously localizes building instances visible in the image and estimates their corresponding cuboid models. Aerial LiDAR and vectorized GIS maps are utilized as supervision. Our network upsamples CNN features to detect small but cluttered building instances. In addition, we estimate building contours through a separate fully convolutional network to avoid overlapping building cuboids.Doctor of Philosoph

    DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction

    Full text link
    Deep Neural Networks (DNNs) have the potential to improve the quality of image-based 3D reconstructions. However, the use of DNNs in the context of 3D reconstruction from large and high-resolution image datasets is still an open challenge, due to memory and computational constraints. We propose a pipeline which takes advantage of DNNs to improve the quality of 3D reconstructions while being able to handle large and high-resolution datasets. In particular, we propose a confidence prediction network explicitly tailored for Multi-View Stereo (MVS) and we use it for both depth map outlier filtering and depth map refinement within our pipeline, in order to improve the quality of the final 3D reconstructions. We train our confidence prediction network on (semi-)dense ground truth depth maps from publicly available real world MVS datasets. With extensive experiments on popular benchmarks, we show that our overall pipeline can produce state-of-the-art 3D reconstructions, both qualitatively and quantitatively.Comment: changes in V3: re-worked confidence prediction scheme, re-organized text, updated experiments; changes in V2: a reference was update

    Stereo matching with temporal consistency using an upright pinhole model

    Get PDF
    Stereo vision, as a subfield of computer vision, has been researched for over 20 years. However, most research efforts have been devoted to single-frame estimation. With the rising interest in autonomous vehicles, more attention should be paid to temporal consistency within stereo matching as depth matching in this case will be used in a video context. In this thesis, temporal consistency in stereo vision will be studied in an effort to reduce time or increase accuracy by utilizing a simple upright camera model. The camera model is used for disparity prediction, which also serves as initialization for different stereo matching frameworks such as local methods and belief propagation. In particular, this thesis proposes a new algorithm based on this model and sped-up patchMatch belief propagation (SPM-BF). The results have demonstrated that the proposed method can reduce computation and convergence time.Ope

    Analysis and Modeling of Passive Stereo and Time-of-Flight Imaging

    Get PDF
    This thesis is concerned with the analysis and modeling of effects which cause errors in passive stereo and Time-of-Flight imaging systems. The main topics are covered in four chapters: I commence with a treatment of a system combining Time-of-Flight imaging with passive stereo and show how commonly used fusion models relate to the measurements of the individual modalities. In addition, I present novel fusion techniques capable of improving the depth reconstruction over those obtained separately by either modality. Next, I present a pipeline and uncertainty analysis for the generation of large amounts of reference data for quantitative stereo evaluation. The resulting datasets not only contain reference geometry, but also per pixel measures of reference data uncertainty. The next two parts deal with individual effects observed: Time-of-Flight cameras suffer from range ambiguity if the scene extends beyond a certain distance. I show that it is possible to extend the valid range by changing design parameters of the underlying measurement system. Finally, I present methods that make it possible to amend model violation errors in stereo due to reflections. This is done by means of modeling a limited level of light transport and material properties in the scene

    Combining Features and Semantics for Low-level Computer Vision

    Get PDF
    Visual perception of depth and motion plays a significant role in understanding and navigating the environment. Reconstructing outdoor scenes in 3D and estimating the motion from video cameras are of utmost importance for applications like autonomous driving. The corresponding problems in computer vision have witnessed tremendous progress over the last decades, yet some aspects still remain challenging today. Striking examples are reflecting and textureless surfaces or large motions which cannot be easily recovered using traditional local methods. Further challenges include occlusions, large distortions and difficult lighting conditions. In this thesis, we propose to overcome these challenges by modeling non-local interactions leveraging semantics and contextual information. Firstly, for binocular stereo estimation, we propose to regularize over larger areas on the image using object-category specific disparity proposals which we sample using inverse graphics techniques based on a sparse disparity estimate and a semantic segmentation of the image. The disparity proposals encode the fact that objects of certain categories are not arbitrarily shaped but typically exhibit regular structures. We integrate them as non-local regularizer for the challenging object class 'car' into a superpixel-based graphical model and demonstrate its benefits especially in reflective regions. Secondly, for 3D reconstruction, we leverage the fact that the larger the reconstructed area, the more likely objects of similar type and shape will occur in the scene. This is particularly true for outdoor scenes where buildings and vehicles often suffer from missing texture or reflections, but share similarity in 3D shape. We take advantage of this shape similarity by localizing objects using detectors and jointly reconstructing them while learning a volumetric model of their shape. This allows to reduce noise while completing missing surfaces as objects of similar shape benefit from all observations for the respective category. Evaluations with respect to LIDAR ground-truth on a novel challenging suburban dataset show the advantages of modeling structural dependencies between objects. Finally, motivated by the success of deep learning techniques in matching problems, we present a method for learning context-aware features for solving optical flow using discrete optimization. Towards this goal, we present an efficient way of training a context network with a large receptive field size on top of a local network using dilated convolutions on patches. We perform feature matching by comparing each pixel in the reference image to every pixel in the target image, utilizing fast GPU matrix multiplication. The matching cost volume from the network's output forms the data term for discrete MAP inference in a pairwise Markov random field. Extensive evaluations reveal the importance of context for feature matching.Die visuelle Wahrnehmung von Tiefe und Bewegung spielt eine wichtige Rolle bei dem VerstĂ€ndnis und der Navigation in unserer Umwelt. Die 3D Rekonstruktion von Szenen im Freien und die SchĂ€tzung der Bewegung von Videokameras sind von grĂ¶ĂŸter Bedeutung fĂŒr Anwendungen, wie das autonome Fahren. Die Erforschung der entsprechenden Probleme des maschinellen Sehens hat in den letzten Jahrzehnten enorme Fortschritte gemacht, jedoch bleiben einige Aspekte heute noch ungelöst. Beispiele hierfĂŒr sind reflektierende und texturlose OberflĂ€chen oder große Bewegungen, bei denen herkömmliche lokale Methoden hĂ€ufig scheitern. Weitere Herausforderungen sind niedrige Bildraten, Verdeckungen, große Verzerrungen und schwierige LichtverhĂ€ltnisse. In dieser Arbeit schlagen wir vor nicht-lokale Interaktionen zu modellieren, die semantische und kontextbezogene Informationen nutzen, um diese Herausforderungen zu meistern. FĂŒr die binokulare Stereo SchĂ€tzung schlagen wir zuallererst vor zusammenhĂ€ngende Bereiche mit objektklassen-spezifischen DisparitĂ€ts VorschlĂ€gen zu regularisieren, die wir mit inversen Grafik Techniken auf der Grundlage einer spĂ€rlichen DisparitĂ€tsschĂ€tzung und semantischen Segmentierung des Bildes erhalten. Die DisparitĂ€ts VorschlĂ€ge kodieren die Tatsache, dass die GegenstĂ€nde bestimmter Kategorien nicht willkĂŒrlich geformt sind, sondern typischerweise regelmĂ€ĂŸige Strukturen aufweisen. Wir integrieren sie fĂŒr die komplexe Objektklasse 'Auto' in Form eines nicht-lokalen Regularisierungsterm in ein Superpixel-basiertes grafisches Modell und zeigen die Vorteile vor allem in reflektierenden Bereichen. Zweitens nutzen wir fĂŒr die 3D-Rekonstruktion die Tatsache, dass mit der GrĂ¶ĂŸe der rekonstruierten FlĂ€che auch die Wahrscheinlichkeit steigt, Objekte von Ă€hnlicher Art und Form in der Szene zu enthalten. Dies gilt besonders fĂŒr Szenen im Freien, in denen GebĂ€ude und Fahrzeuge oft vorkommen, die unter fehlender Textur oder Reflexionen leiden aber Ă€hnlichkeit in der Form aufweisen. Wir nutzen diese Ă€hnlichkeiten zur Lokalisierung von Objekten mit Detektoren und zur gemeinsamen Rekonstruktion indem ein volumetrisches Modell ihrer Form erlernt wird. Dies ermöglicht auftretendes Rauschen zu reduzieren, wĂ€hrend fehlende FlĂ€chen vervollstĂ€ndigt werden, da Objekte Ă€hnlicher Form von allen Beobachtungen der jeweiligen Kategorie profitieren. Die Evaluierung auf einem neuen, herausfordernden vorstĂ€dtischen Datensatz in Anbetracht von LIDAR-Entfernungsdaten zeigt die Vorteile der Modellierung von strukturellen AbhĂ€ngigkeiten zwischen Objekten. Zuletzt, motiviert durch den Erfolg von Deep Learning Techniken bei der Mustererkennung, prĂ€sentieren wir eine Methode zum Erlernen von kontextbezogenen Merkmalen zur Lösung des optischen Flusses mittels diskreter Optimierung. Dazu stellen wir eine effiziente Methode vor um zusĂ€tzlich zu einem Lokalen Netzwerk ein Kontext-Netzwerk zu erlernen, das mit Hilfe von erweiterter Faltung auf Patches ein großes rezeptives Feld besitzt. FĂŒr das Feature Matching vergleichen wir mit schnellen GPU-Matrixmultiplikation jedes Pixel im Referenzbild mit jedem Pixel im Zielbild. Das aus dem Netzwerk resultierende Matching Kostenvolumen bildet den Datenterm fĂŒr eine diskrete MAP Inferenz in einem paarweisen Markov Random Field. Eine umfangreiche Evaluierung zeigt die Relevanz des Kontextes fĂŒr das Feature Matching
    corecore