568 research outputs found

    RIBBONS: Rapid Inpainting Based on Browsing of Neighborhood Statistics

    Full text link
    Image inpainting refers to filling missing places in images using neighboring pixels. It also has many applications in different tasks of image processing. Most of these applications enhance the image quality by significant unwanted changes or even elimination of some existing pixels. These changes require considerable computational complexities which in turn results in remarkable processing time. In this paper we propose a fast inpainting algorithm called RIBBONS based on selection of patches around each missing pixel. This would accelerate the execution speed and the capability of online frame inpainting in video. The applied cost-function is a combination of statistical and spatial features in all neighboring pixels. We evaluate some candidate patches using the proposed cost function and minimize it to achieve the final patch. Experimental results show the higher speed of 'Ribbons' in comparison with previous methods while being comparable in terms of PSNR and SSIM for the images in MISC dataset

    Low rank prior in single patches for non-pointwise impulse noise removal

    Get PDF

    Non-Local Robust Quaternion Matrix Completion for Large-Scale Color Images and Videos Inpainting

    Full text link
    The image nonlocal self-similarity (NSS) prior refers to the fact that a local patch often has many nonlocal similar patches to it across the image. In this paper we apply such NSS prior to enhance the robust quaternion matrix completion (QMC) method and significantly improve the inpainting performance. A patch group based NSS prior learning scheme is proposed to learn explicit NSS models from natural color images. The NSS-based QMC algorithm computes an optimal low-rank approximation to the high-rank color image, resulting in high PSNR and SSIM measures and particularly the better visual quality. A new joint NSS-base QMC method is also presented to solve the color video inpainting problem based quaternion tensor representation. The numerical experiments on large-scale color images and videos indicate the advantages of NSS-based QMC over the state-of-the-art methods.Comment: 22 pages, 10 figure
    corecore