33 research outputs found

    Ensemble of texture descriptors and classifiers for face recognition

    Get PDF
    Abstract Presented in this paper is a novel system for face recognition that works well in the wild and that is based on ensembles of descriptors that utilize different preprocessing techniques. The power of our proposed approach is demonstrated on two datasets: the FERET dataset and the Labeled Faces in the Wild (LFW) dataset. In the FERET datasets, where the aim is identification, we use the angle distance. In the LFW dataset, where the aim is to verify a given match, we use the Support Vector Machine and Similarity Metric Learning. Our proposed system performs well on both datasets, obtaining, to the best of our knowledge, one of the highest performance rates published in the literature on the FERET datasets. Particularly noteworthy is the fact that these good results on both datasets are obtained without using additional training patterns. The MATLAB source of our best ensemble approach will be freely available at https://www.dei.unipd.it/node/2357

    Human Attention Detection Using AM-FM Representations

    Get PDF
    Human activity detection from digital videos presents many challenges to the computer vision and image processing communities. Recently, many methods have been developed to detect human activities with varying degree of success. Yet, the general human activity detection problem remains very challenging, especially when the methods need to work “in the wild” (e.g., without having precise control over the imaging geometry). The thesis explores phase-based solutions for (i) detecting faces, (ii) back of the heads, (iii) joint detection of faces and back of the heads, and (iv) whether the head is looking to the left or the right, using standard video cameras without any control on the imaging geometry. The proposed phase-based approach is based on the development of simple and robust methods that relie on the use of Amplitude Modulation - Frequency Modulation (AM-FM) models. The approach is validated using video frames extracted from the Advancing Outof- school Learning in Mathematics and Engineering (AOLME) project. The dataset consisted of 13,265 images from ten students looking at the camera, and 6,122 images from five students looking away from the camera. For the students facing the camera, the method was able to correctly classify 97.1% of them looking to the left and 95.9% of them looking to the right. For the students facing the back of the camera, the method was able to correctly classify 87.6% of them looking to the left and 93.3% of them looking to the right. The results indicate that AM-FM based methods hold great promise for analyzing human activity videos

    High Performance Video Stream Analytics System for Object Detection and Classification

    Get PDF
    Due to the recent advances in cameras, cell phones and camcorders, particularly the resolution at which they can record an image/video, large amounts of data are generated daily. This video data is often so large that manually inspecting it for object detection and classification can be time consuming and error prone, thereby it requires automated analysis to extract useful information and meta-data. The automated analysis from video streams also comes with numerous challenges such as blur content and variation in illumination conditions and poses. We investigate an automated video analytics system in this thesis which takes into account the characteristics from both shallow and deep learning domains. We propose fusion of features from spatial frequency domain to perform highly accurate blur and illumination invariant object classification using deep learning networks. We also propose the tuning of hyper-parameters associated with the deep learning network through a mathematical model. The mathematical model used to support hyper-parameter tuning improved the performance of the proposed system during training. The outcomes of various hyper-parameters on system's performance are compared. The parameters that contribute towards the most optimal performance are selected for the video object classification. The proposed video analytics system has been demonstrated to process a large number of video streams and the underlying infrastructure is able to scale based on the number and size of the video stream(s) being processed. The extensive experimentation on publicly available image and video datasets reveal that the proposed system is significantly more accurate and scalable and can be used as a general purpose video analytics system.N/

    Statistical binary patterns for rotational invariant texture classification

    No full text
    International audienceA new texture representation framework called statistical binary patterns (SBP) is presented. It consists in applying rotation invariant local binary pattern operators (LBP riu2) to a series of moment images, defined by local statistics uniformly computed using a given spatial support. It can be seen as a generalisation of the commonly used complementation approach (CLBP), since it extends the local description not only to local contrast information, but to higher order local variations. In short, SBPs aim at expanding LBP self-similarity operator from the local gray level to the regional distribution level. Thanks to a richer local description, the SBPs have better discrimination power than other LBP variants. Furthermore, thanks to the regularisation effect of the statistical moments, the SBP descriptors show better noise robustness than classical CLBPs. The interest of the approach is validated through a large experimental study performed on five texture databases: KTH-TIPS, KTH-TIPS 2b, CUReT, UIUC and DTD. The results show that, for the four first datasets, the SBPs are comparable or outperform the recent state-of-the-art methods, even using small support for the LBP operator, and using limited size spatial support for the computation of the local statistics

    Multi-dimensional local binary pattern texture descriptors and their application for medical image analysis

    Get PDF
    Texture can be broadly stated as spatial variation of image intensities. Texture analysis and classification is a well researched area for its importance to many computer vision applications. Consequently, much research has focussed on deriving powerful and efficient texture descriptors. Local binary patterns (LBP) and its variants are simple yet powerful texture descriptors. LBP features describe the texture neighbourhood of a pixel using simple comparison operators, and are often calculated based on varying neighbourhood radii to provide multi-resolution texture descriptions. A comprehensive evaluation of different LBP variants on a common benchmark dataset is missing in the literature. This thesis presents the performance for different LBP variants on texture classification and retrieval tasks. The results show that multi-scale local binary pattern variance (LBPV) gives the best performance over eight benchmarked datasets. Furthermore, improvements to the Dominant LBP (D-LBP) by ranking dominant patterns over complete training set and Compound LBP (CM-LBP) by considering 16 bits binary codes are suggested which are shown to outperform their original counterparts. The main contribution of the thesis is the introduction of multi-dimensional LBP features, which preserve the relationships between different scales by building a multi-dimensional histogram. The results on benchmarked classification and retrieval datasets clearly show that the multi-dimensional LBP (MD-LBP) improves the results compared to conventional multi-scale LBP. The same principle is applied to LBPV (MD-LBPV), again leading to improved performance. The proposed variants result in relatively large feature lengths which is addressed using three different feature length reduction techniques. Principle component analysis (PCA) is shown to give the best performance when the feature length is reduced to match that of conventional multi-scale LBP. The proposed multi-dimensional LBP variants are applied for medical image analysis application. The first application is nailfold capillary (NC) image classification. Performance of MD-LBPV on NC images is highest, whereas for second application, HEp-2 cell classification, performance of MD-LBP is highest. It is observed that the proposed texture descriptors gives improved texture classification accuracy

    Fusion features ensembling models using Siamese convolutional neural network for kinship verification

    Get PDF
    Family is one of the most important entities in the community. Mining the genetic information through facial images is increasingly being utilized in wide range of real-world applications to facilitate family members tracing and kinship analysis to become remarkably easy, inexpensive, and fast as compared to the procedure of profiling Deoxyribonucleic acid (DNA). However, the opportunities of building reliable models for kinship recognition are still suffering from the insufficient determination of the familial features, unstable reference cues of kinship, and the genetic influence factors of family features. This research proposes enhanced methods for extracting and selecting the effective familial features that could provide evidences of kinship leading to improve the kinship verification accuracy through visual facial images. First, the Convolutional Neural Network based on Optimized Local Raw Pixels Similarity Representation (OLRPSR) method is developed to improve the accuracy performance by generating a new matrix representation in order to remove irrelevant information. Second, the Siamese Convolutional Neural Network and Fusion of the Best Overlapping Blocks (SCNN-FBOB) is proposed to track and identify the most informative kinship clues features in order to achieve higher accuracy. Third, the Siamese Convolutional Neural Network and Ensembling Models Based on Selecting Best Combination (SCNN-EMSBC) is introduced to overcome the weak performance of the individual image and classifier. To evaluate the performance of the proposed methods, series of experiments are conducted using two popular benchmarking kinship databases; the KinFaceW-I and KinFaceW-II which then are benchmarked against the state-of-art algorithms found in the literature. It is indicated that SCNN-EMSBC method achieves promising results with the average accuracy of 92.42% and 94.80% on KinFaceW-I and KinFaceW-II, respectively. These results significantly improve the kinship verification performance and has outperformed the state-of-art algorithms for visual image-based kinship verification

    Computational imaging and automated identification for aqueous environments

    Get PDF
    Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution June 2011Sampling the vast volumes of the ocean requires tools capable of observing from a distance while retaining detail necessary for biology and ecology, ideal for optical methods. Algorithms that work with existing SeaBED AUV imagery are developed, including habitat classi fication with bag-of-words models and multi-stage boosting for rock sh detection. Methods for extracting images of sh from videos of longline operations are demonstrated. A prototype digital holographic imaging device is designed and tested for quantitative in situ microscale imaging. Theory to support the device is developed, including particle noise and the effects of motion. A Wigner-domain model provides optimal settings and optical limits for spherical and planar holographic references. Algorithms to extract the information from real-world digital holograms are created. Focus metrics are discussed, including a novel focus detector using local Zernike moments. Two methods for estimating lateral positions of objects in holograms without reconstruction are presented by extending a summation kernel to spherical references and using a local frequency signature from a Riesz transform. A new metric for quickly estimating object depths without reconstruction is proposed and tested. An example application, quantifying oil droplet size distributions in an underwater plume, demonstrates the efficacy of the prototype and algorithms.Funding was provided by NOAA Grant #5710002014, NOAA NMFS Grant #NA17RJ1223, NSF Grant #OCE-0925284, and NOAA Grant #NA10OAR417008
    corecore