516 research outputs found

    The Impact of Exposed Passwords on Honeyword Efficacy

    Full text link
    Honeywords are decoy passwords that can be added to a credential database; if a login attempt uses a honeyword, this indicates that the site's credential database has been leaked. In this paper we explore the basic requirements for honeywords to be effective, in a threat model where the attacker knows passwords for the same users at other sites. First, we show that for user-chosen (vs. algorithmically generated, i.e., by a password manager) passwords, existing honeyword-generation algorithms largely fail to achieve reasonable tradeoffs between false positives and false negatives in this threat model. Second, we show that for users leveraging algorithmically generated passwords, state-of-the-art methods for honeyword generation will produce honeywords that are not sufficiently deceptive, yielding many false negatives. Instead, we find that only a honeyword-generation algorithm that uses the same password generator as the user can provide deceptive honeywords in this case. However, when the defender's ability to infer the generator from the (one) account password is less accurate than the attacker's ability to infer the generator from potentially many, this deception can again wane. Taken together, our results provide a cautionary note for the state of honeyword research and pose new challenges to the field

    CharBot: A Simple and Effective Method for Evading DGA Classifiers

    Full text link
    Domain generation algorithms (DGAs) are commonly leveraged by malware to create lists of domain names which can be used for command and control (C&C) purposes. Approaches based on machine learning have recently been developed to automatically detect generated domain names in real-time. In this work, we present a novel DGA called CharBot which is capable of producing large numbers of unregistered domain names that are not detected by state-of-the-art classifiers for real-time detection of DGAs, including the recently published methods FANCI (a random forest based on human-engineered features) and LSTM.MI (a deep learning approach). CharBot is very simple, effective and requires no knowledge of the targeted DGA classifiers. We show that retraining the classifiers on CharBot samples is not a viable defense strategy. We believe these findings show that DGA classifiers are inherently vulnerable to adversarial attacks if they rely only on the domain name string to make a decision. Designing a robust DGA classifier may, therefore, necessitate the use of additional information besides the domain name alone. To the best of our knowledge, CharBot is the simplest and most efficient black-box adversarial attack against DGA classifiers proposed to date
    • …
    corecore