824 research outputs found

    Detection of Dishonest Entities

    Get PDF
    This paper discusses mechanisms to identify dishonest users of services provided by a server in environments where identities of honest users must be kept as their secrets. An anonymous token based mechanism enables the server to identify dishonest users when dishonest events are detected while the users are receiving services, and a homomorhic anonymous token based one enables that even dishonest events can be detected only after the server completed their services and the users had left from the server. A linear equation based encryption algorithm that is used for implementing the above methods is also enhanced

    A comprehensive meta-analysis of cryptographic security mechanisms for cloud computing

    Get PDF
    The file attached to this record is the author's final peer reviewed version. The Publisher's final version can be found by following the DOI link.The concept of cloud computing offers measurable computational or information resources as a service over the Internet. The major motivation behind the cloud setup is economic benefits, because it assures the reduction in expenditure for operational and infrastructural purposes. To transform it into a reality there are some impediments and hurdles which are required to be tackled, most profound of which are security, privacy and reliability issues. As the user data is revealed to the cloud, it departs the protection-sphere of the data owner. However, this brings partly new security and privacy concerns. This work focuses on these issues related to various cloud services and deployment models by spotlighting their major challenges. While the classical cryptography is an ancient discipline, modern cryptography, which has been mostly developed in the last few decades, is the subject of study which needs to be implemented so as to ensure strong security and privacy mechanisms in today’s real-world scenarios. The technological solutions, short and long term research goals of the cloud security will be described and addressed using various classical cryptographic mechanisms as well as modern ones. This work explores the new directions in cloud computing security, while highlighting the correct selection of these fundamental technologies from cryptographic point of view

    An improved Framework for Biometric Database’s privacy

    Get PDF
    Security and privacy are huge challenges in biometric systems. Biometrics are sensitive data that should be protected from any attacker and especially attackers targeting the confidentiality and integrity of biometric data. In this paper an extensive review of different physiological biometric techniques is provided. A comparative analysis of the various sus mentioned biometrics, including characteristics and properties is conducted. Qualitative and quantitative evaluation of the most relevant physiological biometrics is achieved. Furthermore, we propose a new framework for biometric database privacy. Our approach is based on the use of the promising fully homomorphic encryption technology. As a proof of concept, we establish an initial implementation of our security module using JAVA programming language

    Security and Privacy Issues of Big Data

    Get PDF
    This chapter revises the most important aspects in how computing infrastructures should be configured and intelligently managed to fulfill the most notably security aspects required by Big Data applications. One of them is privacy. It is a pertinent aspect to be addressed because users share more and more personal data and content through their devices and computers to social networks and public clouds. So, a secure framework to social networks is a very hot topic research. This last topic is addressed in one of the two sections of the current chapter with case studies. In addition, the traditional mechanisms to support security such as firewalls and demilitarized zones are not suitable to be applied in computing systems to support Big Data. SDN is an emergent management solution that could become a convenient mechanism to implement security in Big Data systems, as we show through a second case study at the end of the chapter. This also discusses current relevant work and identifies open issues.Comment: In book Handbook of Research on Trends and Future Directions in Big Data and Web Intelligence, IGI Global, 201

    Malware-Resistant Protocols for Real-World Systems

    Get PDF
    Cryptographic protocols are widely used to protect real-world systems from attacks. Paying for goods in a shop, withdrawing money or browsing the Web; all these activities are backed by cryptographic protocols. However, in recent years a potent threat became apparent. Malware is increasingly used in attacks to bypass existing security mechanisms. Many cryptographic protocols that are used in real-world systems today have been found to be susceptible to malware attacks. One reason for this is that most of these protocols were designed with respect to the Dolev-Yao attack model that assumes an attacker to control the network between computer systems but not the systems themselves. Furthermore, most real-world protocols do not provide a formal proof of security and thus lack a precise definition of the security goals the designers tried to achieve. This work tackles the design of cryptographic protocols that are resilient to malware attacks, applicable to real-world systems, and provably secure. In this regard, we investigate three real-world use cases: electronic payment, web authentication, and data aggregation. We analyze the security of existing protocols and confirm results from prior work that most protocols are not resilient to malware. Furthermore, we provide guidelines for the design of malware-resistant protocols and propose such protocols. In addition, we formalize security notions for malware-resistance and use a formal proof of security to verify the security guarantees of our protocols. In this work we show that designing malware-resistant protocols for real-world systems is possible. We present a new security notion for electronic payment and web authentication, called one-out-of-two security, that does not require a single device to be trusted and ensures that a protocol stays secure as long as one of two devices is not compromised. Furthermore, we propose L-Pay, a cryptographic protocol for paying at the point of sale (POS) or withdrawing money at an automated teller machine (ATM) satisfying one-out-of-two security, FIDO2 With Two Displays (FIDO2D) a cryptographic protocol to secure transactions in the Web with one-out-of-two security and Secure Aggregation Grouped by Multiple Attributes (SAGMA), a cryptographic protocol for secure data aggregation in encrypted databases. In this work, we take important steps towards the use of malware-resistant protocols in real-world systems. Our guidelines and protocols can serve as templates to design new cryptographic protocols and improve security in further use cases

    Implementation of a Secure Internet Voting Protocol

    Get PDF
    Voting is one of the most important activities in a democratic society. In a traditional voting environment voting process sometimes becomes quite inconvenient due to the reluctance of certain voters to visit a polling booth to cast votes besides involving huge social and human resources. The development of computer networks and elaboration of cryptographic techniques facilitate the implementation of electronic voting. In this work we propose a secure electronic voting protocol that is suitable for large scale voting over the Internet. The protocol allows a voter to cast his or her ballot anonymously, by exchanging untraceable yet authentic messages. The e-voting protocol is based on blind signatures and has the properties of anonymity, mobility, efficiency, robustness, authentication, uniqueness, and universal verifiability and coercion-resistant. The proposed protocol encompasses three distinct phases - that of registration phase, voting phase and counting phase involving five parties, the voter, certification centre, authentication server, voting server and a tallying server
    corecore