479 research outputs found

    Integrating expert-based objectivist and nonexpert-based subjectivist paradigms in landscape assessment

    Get PDF
    This thesis explores the integration of objective and subjective measures of landscape aesthetics, particularly focusing on crowdsourced geo-information. It addresses the increasing importance of considering public perceptions in national landscape governance, in line with the European Landscape Convention's emphasis on public involvement. Despite this, national landscape assessments often remain expert-centric and top-down, facing challenges in resource constraints and limited public engagement. The thesis leverages Web 2.0 technologies and crowdsourced geographic information, examining correlations between expert-based metrics of landscape quality and public perceptions. The Scenic-Or-Not initiative for Great Britain, GIS-based Wildness spatial layers, and LANDMAP dataset for Wales serve as key datasets for analysis. The research investigates the relationships between objective measures of landscape wildness quality and subjective measures of aesthetics. Multiscale geographically weighted regression (MGWR) reveals significant correlations, with different wildness components exhibiting varying degrees of association. The study suggests the feasibility of incorporating wildness and scenicness measures into formal landscape aesthetic assessments. Comparing expert and public perceptions, the research identifies preferences for water-related landforms and variations in upland and lowland typologies. The study emphasizes the agreement between experts and non-experts on extreme scenic perceptions but notes discrepancies in mid-spectrum landscapes. To overcome limitations in systematic landscape evaluations, an integrative approach is proposed. Utilizing XGBoost models, the research predicts spatial patterns of landscape aesthetics across Great Britain, based on the Scenic-Or-Not initiatives, Wildness spatial layers, and LANDMAP data. The models achieve comparable accuracy to traditional statistical models, offering insights for Landscape Character Assessment practices and policy decisions. While acknowledging data limitations and biases in crowdsourcing, the thesis discusses the necessity of an aggregation strategy to manage computational challenges. Methodological considerations include addressing the modifiable areal unit problem (MAUP) associated with aggregating point-based observations. The thesis comprises three studies published or submitted for publication, each contributing to the understanding of the relationship between objective and subjective measures of landscape aesthetics. The concluding chapter discusses the limitations of data and methods, providing a comprehensive overview of the research

    Graduate Catalog of Studies, 2023-2024

    Get PDF

    Graduate Catalog of Studies, 2023-2024

    Get PDF

    2011 GREAT Day Program

    Get PDF
    SUNY Geneseo’s Fifth Annual GREAT Day.https://knightscholar.geneseo.edu/program-2007/1005/thumbnail.jp

    Challenges and perspectives of hate speech research

    Get PDF
    This book is the result of a conference that could not take place. It is a collection of 26 texts that address and discuss the latest developments in international hate speech research from a wide range of disciplinary perspectives. This includes case studies from Brazil, Lebanon, Poland, Nigeria, and India, theoretical introductions to the concepts of hate speech, dangerous speech, incivility, toxicity, extreme speech, and dark participation, as well as reflections on methodological challenges such as scraping, annotation, datafication, implicity, explainability, and machine learning. As such, it provides a much-needed forum for cross-national and cross-disciplinary conversations in what is currently a very vibrant field of research

    24th Nordic Conference on Computational Linguistics (NoDaLiDa)

    Get PDF

    On Making in the Digital Humanities

    Get PDF
    On Making in the Digital Humanities fills a gap in our understanding of digital humanities projects and craft by exploring the processes of making as much as the products that arise from it. The volume draws focus to the interwoven layers of human and technological textures that constitute digital humanities scholarship. To do this, it assembles a group of well-known, experienced and emerging scholars in the digital humanities to reflect on various forms of making (we privilege here the creative and applied side of the digital humanities). The volume honours the work of John Bradley, as it is totemic of a practice of making that is deeply informed by critical perspectives. A special chapter also honours the profound contributions that this volume’s co-editor, Stéfan Sinclair, made to the creative, applied and intellectual praxis of making and the digital humanities. Stéfan Sinclair passed away on 6 August 2020. The chapters gathered here are individually important, but together provide a very human view on what it is to do the digital humanities, in the past, present and future. This book will accordingly be of interest to researchers, teachers and students of the digital humanities; creative humanities, including maker spaces and culture; information studies; the history of computing and technology; and the history of science and the humanities

    Ultra-high temperature concentrated solar thermal energy

    Get PDF
    Given the extremely high surface temperature of the Sun (~5778 K), solar radiation has the theoretical potential, in accordance with the second law of thermodynamics, to heat a receiver on Earth up to ultra-high temperatures (specified in this thesis as >1300 K). However, there is a gap between theory and practice, as contemporary solar thermal energy systems are still limited to temperatures below 900 K due to material and mechanical limitations. Running solar thermal energy at ultra-high temperatures promises greater energy conversion efficiencies for power plants by upgrading their basic cycles to include more advanced power cycles. Furthermore, the provision of solar thermal energy at ultra-high temperatures can unlock a wide range of energy-intensive industrial applications, including hydrogen and cement production, which can contribute to decarbonising sectors which are difficult to electrify. This thesis proposes a novel concept of an ultra-high temperature solar cavity receiver based on an optically exposed liquid metal heat transfer fluid, which flows down a corrugated back plate. The concept is investigated using a quasi-steady-state analytical energy model, in addition to a radiation-coupled Computational Fluid Dynamics (CFD) solution. The developed analysis methods are tailored to the proposed class of receivers, nonetheless, they can be generalised for broad solar receiver analysis or for analysing similar problems involving volumetric radiation absorption in other thermal applications. The concept is shown implementable at its absorptive cavity configuration with an overall (optical and thermal) receiver efficiency exceeding 70%. The proposed concept is a step towards narrowing the technological mismatch, in terms of temperature and scale, between state-of-the-art thermal energy storage and concentrated solar thermal at ultra-high temperatures. A characterisation of prospective ultra-high temperature receivers is presented, which involved a review of state-of-the-art solar thermal technologies with the purpose of identifying the existing challenges to operating at ultra-high temperatures. Based on this characterisation, the proposed receiver is designed to address the literature concerns. The proposed receiver concept involved novel engineering features, including the use of refractory containment materials and a transparent ceramic window to seal the aperture. Therefore, the conceptual investigation attempted to address possible concerns that might be introduced by the new features. Finally, the proposed receiver is demonstrated in a concentrated solar power plant application to emphasise, using quantitative terms, the benefits of operating the receiver at ultra-high temperatures for large-scale applications
    corecore