3,287 research outputs found

    Energy Management

    Get PDF
    Forecasts point to a huge increase in energy demand over the next 25 years, with a direct and immediate impact on the exhaustion of fossil fuels, the increase in pollution levels and the global warming that will have significant consequences for all sectors of society. Irrespective of the likelihood of these predictions or what researchers in different scientific disciplines may believe or publicly say about how critical the energy situation may be on a world level, it is without doubt one of the great debates that has stirred up public interest in modern times. We should probably already be thinking about the design of a worldwide strategic plan for energy management across the planet. It would include measures to raise awareness, educate the different actors involved, develop policies, provide resources, prioritise actions and establish contingency plans. This process is complex and depends on political, social, economic and technological factors that are hard to take into account simultaneously. Then, before such a plan is formulated, studies such as those described in this book can serve to illustrate what Information and Communication Technologies have to offer in this sphere and, with luck, to create a reference to encourage investigators in the pursuit of new and better solutions

    Dynamic Incentives for Optimal Control of Competitive Power Systems

    Get PDF
    This work presents a real-time dynamic pricing framework for future electricity markets. Deduced by first-principles analysis of physical, economic, and communication constraints within the power system, the proposed feedback control mechanism ensures both closed-loop system stability and economic efficiency at any given time. The resulting price signals are able to incentivize competitive market participants to eliminate spatio-temporal shortages in power supply quickly and purposively

    Dynamic Incentives for Optimal Control of Competitive Power Systems

    Get PDF
    Technologisch herausfordernde Transformationsprozesse wie die Energiewende können durch passende Anreizsysteme entscheidend beschleunigt werden. Ziel solcher Anreize ist es hierbei, ein Umfeld idealerweise so zu schaffen, dass das Zusammenspiel aller aus Sicht der beteiligten Wettbewerber individuell optimalen Einzelhandlungen auch global optimal im Sinne eines ĂŒbergeordneten Großziels ist. Die vorliegende Dissertation schafft einen regelungstechnischen Zugang zur Frage optimaler Anreizsysteme fĂŒr heutige und zukĂŒnftige Stromnetze im Zieldreieck aus SystemstabilitĂ€t, ökonomischer Effizienz und Netzdienlichkeit. Entscheidende Neuheit des entwickelten Ansatzes ist die EinfĂŒhrung zeitlich wie örtlich differenzierter Echtzeit-Preissignale, die sich aus der Lösung statischer und dynamischer Optimierungsprobleme ergeben. Der Miteinbezug lokal verfĂŒgbarer Messinformationen, die konsequente Mitmodellierung des unterlagerten physikalischen Netzes inklusive resistiver Verluste und die durchgĂ€ngig zeitkontinuierliche Formulierung aller Teilsysteme ebnen den Weg von einer reinen Anreiz-Steuerung hin zu einer echten Anreiz-Regelung. Besonderes Augenmerk der Arbeit liegt in einer durch das allgemeine Unbundling-Gebot bedingten rigorosen Trennung zwischen Markt- und Netzakteuren. Nach umfangreicher Analyse des hierbei entstehenden geschlossenen Regelkreises erfolgt die beispielhafte Anwendung der Regelungsarchitektur fĂŒr den Aufbau eines neuartigen Echtzeit-Engpassmanagementsystems. Weitere praktische Vorteile des entwickelten Ansatzes im Vergleich zu bestehenden Konzepten werden anhand zweier Fallstudien deutlich. Die port-basierte Systemmodellierung, der Verzicht auf zentralisierte Regeleingriffe und nicht zuletzt die Möglichkeit zur automatischen, dezentralen Selbstregulation aller Preise ĂŒber das Gesamtnetz hinweg stellen schließlich die problemlose Erweiterbarkeit um zusĂ€tzliche optionale Anreizkomponenten sicher

    Dynamic Incentives for Optimal Control of Competitive Power Systems

    Get PDF
    This work presents a real-time dynamic pricing framework for future electricity markets. Deduced by first-principles analysis of physical, economic, and communication constraints within the power system, the proposed feedback control mechanism ensures both closed-loop system stability and economic efficiency at any given time. The resulting price signals are able to incentivize competitive market participants to eliminate spatio-temporal shortages in power supply quickly and purposively

    Advanced Discrete-Time Control Methods for Industrial Applications

    Full text link
    This thesis focuses on developing advanced control methods for two industrial systems in discrete-time aiming to enhance their performance in delivering the control objectives as well as considering the practical aspects. The first part addresses wind power dispatch into the electricity network using a battery energy storage system (BESS). To manage the amount of energy sold to the electricity market, a novel control scheme is developed based on discrete-time model predictive control (MPC) to ensure the optimal operation of the BESS in the presence of practical constraints. The control scheme follows a decision policy to sell more energy at peak demand times and store it at off-peaks in compliance with the Australian National Electricity Market rules. The performance of the control system is assessed under different scenarios using actual wind farm and electricity price data in simulation environment. The second part considers the control of overhead crane systems for automatic operation. To achieve high-speed load transportation with high-precision and minimum load swings, a new modeling approach is developed based on independent joint control strategy which considers actuators as the main plant. The nonlinearities of overhead crane dynamics are treated as disturbances acting on each actuator. The resulting model enables us to estimate the unknown parameters of the system including coulomb friction constants. A novel load swing control is also designed based on passivity-based control to suppress load swings. Two discrete-time controllers are then developed based on MPC and state feedback control to track reference trajectories along with a feedforward control to compensate for disturbances using computed torque control and a novel disturbance observer. The practical results on an experimental overhead crane setup demonstrate the high performance of the designed control systems.Comment: PhD Thesis, 230 page

    Mergers, acquisitions and technological regimes: the European experience over the period 2002-2005

    Get PDF
    Comparisons by countries and by sectors of mergers and acquisitions have usually been performed in separate fields of research. A first group of studies, focusing on international comparisons, has explored the role of corporate governance systems, investor protection laws and other countries’ regulatory institutions as the main determinants of takeovers around the world. A second group of contributions has attributed a central role to variations in industry composition, documenting that, in each country, mergers occur in waves and within each wave clustering by industry is observed. This paper aims to integrate both perspectives and to make comparisons by countries and by sectors, thus exploring the role of various driving forces on takeover activities. It also intends to consider the specific influence that technological regimes and their innovation patterns may exert in reallocating assets and moving capital among sectors. This will be done by examining the European experience of the last few years (2002-2005). We found that even in countries where transfer of control is a frequent phenomenon, mergers are less frequent in those sectors where innovation is a cumulative process and where takeovers may be a threat to the continuity of accumulation of innovative capabilities.Mergers and Acquisitions, Corporate Governance, Technological Regimes

    Advanced applications for smart energy systems considering grid-interactive demand response

    Get PDF

    Advanced applications for smart energy systems considering grid-interactive demand response

    Get PDF

    Empirical research of the Chinese coastal coal freight index derivatives hedging effectiveness

    Get PDF

    Vehicle-to-Grid Integration for Enhancement of Grid: A Distributed Resource Allocation Approach

    Get PDF
    In the future grids, to reduce greenhouse gas emissions Electric Vehicles (EVs) seems to be an important means of transportation. One of the major disadvantages of the future grid is the demand-supply mismatch which can be mitigated by incorporating the EVs into the grid. The paper introduces the concept of the Distributed Resource Allocation (DRA) approach for incorporating a large number of Plug-in EV (PEVs) with the power grid utilizing the concept of achieving output consensus. The charging/discharging time of all the participating PEVs are separated with respect to time slots and are considered as strategies. The major aim of the paper is to obtain a favorable charging strategy for each grid-connected PEVs in such a way that it satisfies both grid objectives in terms of load profile smoothening and minimizing of load shifting as well as economic and social interests of vehicle owners i.e. a fair share of the rate of charging for all connected PEVs. The three-fold contribution of the paper in smoothening of load profile, load shifting minimization, and fair charging rate is validated using a representative case study. The results confirm improvement in load profile and also highlight a fair deal in the charging rate for each PEV
    • 

    corecore