204 research outputs found

    On the passivity of interaction control with series elastic actuation

    Get PDF
    Regulating the mechanical interaction between robot and environment is a fundamentally important problem in robotics. Many applications such as manipulation and assembly tasks necessitate interaction control. Applications in which the robots are expected to collaborate and share the workspace with humans also require interaction control. Therefore, interaction controllers are quintessential to physical human-robot interaction (pHRI) applications. Passivity paradigm provides powerful design tools to ensure the safety of interaction. It relies on the idea that passive systems do not generate energy that can potentially destabilize the system. Thus, coupled stability is guaranteed if the controller and the environment are passive. Fortunately, passive environments constitute an extensive and useful set, including all combinations of linear or nonlinear masses, springs, and dampers. Moreover, a human operator may also be treated as a passive network element. Passivity paradigm is appealing for pHRI applications as it ensures stability robustness and provides ease-of-control design. However, passivity is a conservative framework which imposes stringent limits on control gains that deteriorate the performance. Therefore, it is of paramount importance to obtain the most relaxed passivity bounds for the control design problem. Series Elastic Actuation (SEA) has become prevalent in pHRI applications as it provides considerable advantages over traditional sti actuators in terms of stability robustness and delity of force control, thanks to deliberately introduced compliance between the actuator and the load. Several impedance control architectures have been proposed for SEA. Among the alternatives, the cascaded controller with an inner-most velocity loop, an intermediate torque loop and an outer-most impedance loop is particularly favoured for its simplicity, robustness, and performance. In this thesis, we derive the necessary and su cient conditions to ensure the passivity of the cascade-controller architecture for rendering two classical linear impedance models of null impedance and pure spring. Based on the newly established passivity conditions, we provide non-conservative design guidelines to haptically display free-space and virtual spring while ensuring coupled stability, thus the safety of interaction. We demonstrate the validity of these conditions through simulation studies as well as physical experiments. We demonstrate the importance of including physical damping in the actuator model during derivation of passivity conditions, when integral controllers are utilized. We note the unintuitive adversary e ect of actuator damping on system passivity. More precisely, we establish that the damping term imposes an extra bound on controller gains to preserve passivity. We further study an extension to the cascaded SEA control architecture and discover that series elastic damping actuation (SEDA) can passively render impedances that are out of the range of SEA. In particular, we demonstrate that SEDA can passively render Voigt model and impedances higher than the physical spring-damper pair in SEDA. The mathematical analyses of SEDA are veri ed through simulations

    Robot Manipulators

    Get PDF
    Robot manipulators are developing more in the direction of industrial robots than of human workers. Recently, the applications of robot manipulators are spreading their focus, for example Da Vinci as a medical robot, ASIMO as a humanoid robot and so on. There are many research topics within the field of robot manipulators, e.g. motion planning, cooperation with a human, and fusion with external sensors like vision, haptic and force, etc. Moreover, these include both technical problems in the industry and theoretical problems in the academic fields. This book is a collection of papers presenting the latest research issues from around the world

    Stable, high-force, low-impedance robotic actuators for human-interactive machines

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Mechanical Engineering, 2005.Includes bibliographical references (p. 347-359).Robots that engage in significant physical interaction with humans, such as robotic physical therapy aids, must exhibit desired mechanical endpoint impedance while simultaneously producing large forces. In most practical robot configurations, this requires actuators with high force-to-weight ratios and low intrinsic impedance. This thesis explores several approaches to improve the tradeoff between actuator force capacity, weight, and ability to produce desired impedance. Existing actuators that render impedance accurately generally have poor force densities while those with high force densities often have high intrinsic impedance. Aggressive force feedback can reduce apparent endpoint impedance, but compromises coupled stability. The common standard for ensuring coupled stability, passivity, can limit performance severely. An alternative measure of coupled stability is proposed that uses limited knowledge of environment dynamics (e.g. a human limb) and applies robust stability tools to port functions. Because of structural differences between interaction control and servo control, classical single-input, single-output control tools cannot be directly applied for design. Instead, a search method is used to select controller parameters for an assumed structure.(cont.) Simulations and experiments show that this new approach can be used to design a force-feedback controller for a robot actuator that improves performance, reduces conservatism, and maintains coupled stability. Adding dynamics in series to change an actuator's physical behavior can also improve performance. The design tools developed for controller design are adapted to select parameters for physical series dynamics and the control system simultaneously. This design procedure is applied to both spring-damper and inertial series dynamics. Results show that both structures can be advantageous, and that the systematic design of hardware and control together can improve performance dramatically over prior work. A remote transmission design is proposed to reduce actuator weight directly. This design uses a stationary direct-drive electromagnetic actuator and a passive, flexible hydraulic transmission with low intrinsic impedance, thereby utilizing the impedance- rendering capabilities of direct-drive actuation and the force density of hydraulic actuation. The design, construction and characterization of a low-weight, low-friction prototype for a human arm therapy robot are discussed. Recommendations and tradeoffs are presented.by Stephen Paul Buerger.Ph.D

    Adaptive robust interaction control for low-cost robotic grasping

    Get PDF
    Robotic grasping is a challenging area in the field of robotics. When a gripper starts interacting with an object to perform a grasp, the mechanical properties of the object (stiffness and damping) will play an important role. A gripper which is stable in isolated conditions, can become unstable when coupled to an object. This can lead to the extreme condition where the gripper becomes unstable and generates excessive or insufficient grip force resulting in the grasped object either being crushed, or falling and breaking. In addition to the stability issue, grasp maintenance is one of the most important requirements of any grasp where it guarantees a secure grasp in the presence of any unknown disturbance. The term grasp maintenance refers to the reaction of the controller in the presence of external disturbances, trying to prevent any undesired slippage. To do so, the controller continuously adjusts the grip force. This is a challenging task as it requires an accurate model of the friction and object’s weight to estimate a sufficient grip force to stop the object from slipping while incurring minimum deformation. Unfortunately, in reality, there is no solution which is able to obtain the mechanical properties, frictional coefficient and weight of an object before establishing a mechanical interaction with it. External disturbance forces are also stochastic meaning they are impossible to predict. This thesis addresses both of the problems mentioned above by:Creating a novel variable stiffness gripper, capable of grasping unknown objects, mainly those found in agricultural or food manufacturing companies. In addition to the stabilisation effect of the introduced variable stiffness mechanism, a novel force control algorithm has been designed that passively controls the grip force in variable stiffness grippers. Due to the passive nature of the suggested controller, it completely eliminates the necessity for any force sensor. The combination of both the proposed variable stiffness gripper and the passivity based control provides a unique solution for the stable grasp and force control problem in tendon driven, angular grippers.Introducing a novel active multi input-multi output slip prevention algorithm. The algorithm developed provides a robust control solution to endow direct drive parallel jaw grippers with the capability to stop held objects from slipping while incurring minimum deformation; this can be done without any prior knowledge of the object’s friction and weight. The large number of experiments provided in this thesis demonstrate the robustness of the proposed controller when controlling parallel jaw grippers in order to quickly grip, lift and place a broad range of objects firmly without dropping or crushing them. This is particularly useful for teleoperation and nuclear decommissioning tasks where there is often no accurate information available about the objects to be handled. This can mean that pre-programming of the gripper is required for each different object and for high numbers of objects this is impractical and overly time-consuming. A robust controller, which is able to compensate for any uncertainties regarding the object model and any unknown external disturbances during grasping, is implemented. This work has advanced the state of the art in the following two main areas: Direct impedance modulation for stable grasping in tendon driven, angular grippers. Active MIMO slip prevention grasp control for direct drive parallel jaw grippers
    • …
    corecore