984 research outputs found

    Teleoperation of passivity-based model reference robust control over the internet

    Get PDF
    This dissertation offers a survey of a known theoretical approach and novel experimental results in establishing a live communication medium through the internet to host a virtual communication environment for use in Passivity-Based Model Reference Robust Control systems with delays. The controller which is used as a carrier to support a robust communication between input-to-state stability is designed as a control strategy that passively compensates for position errors that arise during contact tasks and strives to achieve delay-independent stability for controlling of aircrafts or other mobile objects. Furthermore the controller is used for nonlinear systems, coordination of multiple agents, bilateral teleoperation, and collision avoidance thus maintaining a communication link with an upper bound of constant delay is crucial for robustness and stability of the overall system. For utilizing such framework an elucidation can be formulated by preparing site survey for analyzing not only the geographical distances separating the nodes in which the teleoperation will occur but also the communication parameters that define the virtual topography that the data will travel through. This survey will first define the feasibility of the overall operation since the teleoperation will be used to sustain a delay based controller over the internet thus obtaining a hypothetical upper bound for the delay via site survey is crucial not only for the communication system but also the delay is required for the design of the passivity-based model reference robust control. Following delay calculation and measurement via site survey, bandwidth tests for unidirectional and bidirectional communication is inspected to ensure that the speed is viable to maintain a real-time connection. Furthermore from obtaining the results it becomes crucial to measure the consistency of the delay throughout a sampled period to guarantee that the upper bound is not breached at any point within the communication to jeopardize the robustness of the controller. Following delay analysis a geographical and topological overview of the communication is also briefly examined via a trace-route to understand the underlying nodes and their contribution to the delay and round-trip consistency. To accommodate the communication channel for the controller the input and output data from both nodes need to be encapsulated within a transmission control protocol via a multithreaded design of a robust program within the C language. The program will construct a multithreaded client-server relationship in which the control data is transmitted. For added stability and higher level of security the channel is then encapsulated via an internet protocol security by utilizing a protocol suite for protecting the communication by authentication and encrypting each packet of the session using negotiation of cryptographic keys during each session

    Overhearing the Wireless Interface for 802.11-based Positioning Systems

    Full text link
    Not only the proliferation of 802.11, but also the capability to determine the position of mobile devices make 802.11 highly appealing for many application areas. Typically, a mobile device that wants to know its position regularly performs active or passive scans to obtain the signal strength measurements of neighboring access points. Active and passive scanning are survey techniques originally intended to be performed once in a while to learn about the presence and signal reception quality of access points within communication range. Based on this survey the best suitable access point is selected as the gateway to the wired network. However, so far, no investigations are known to have been launched into how regular scanning affects concurrent data transmissions from an end-user point of view. In this paper, we explore how common data communication is affected while actively or passively scanning at the same time. We found that with an active scanning interval of less than 2 seconds the network conditions such as throughput and round trip delay are insufficient for interactive applications. The same is true for passive scanning if a scanning interval of less than 7 seconds is chosen. Furthermore, we present a novel scan scheme called Monitor Sniffing to reduce client service disruptions. Monitor Sniffing exploits the fact that 802.11 operates on overlapping channels by overhearing the wireless interface. We have implemented our Monitor Sniffing algorithm using commodity 802.11g hardware, and we demonstrate that it is faster than active and passive scanning and does not disturb concurrent data communication. Finally, our approach only requires software modifications on the client side, making the adoption process quite easy

    NetCluster: a Clustering-Based Framework for Internet Tomography

    Get PDF
    Abstract — In this paper, Internet data collected via passive measurement are analyzed to obtain localization information on nodes by clustering (i.e., grouping together) nodes that exhibit similar network path properties. Since traditional clustering algorithms fail to correctly identify clusters of homogeneous nodes, we propose a novel framework, named “NetCluster”, suited to analyze Internet measurement datasets. We show that the proposed framework correctly analyzes synthetically generated traces. Finally, we apply it to real traces collected at the access link of our campus LAN and discuss the network characteristics as seen at the vantage point. I. INTRODUCTION AND MOTIVATIONS The Internet is a complex distributed system which continues to grow and evolve. The unregulated and heterogeneous structure of the current Internet makes it challenging to obtai

    Minimally-intrusive frequent round trip time measurements using Synthetic Packet-Pairs

    Get PDF
    Accurate and frequent round trip time (RTT) measurements are important in testbeds and operational networks. Active measurement techniques inject probe packets that may modify the behaviour of the observed network and may produce misleading RTT estimates if the network handles probe packets differently to regular packets. Previous passive measurement techniques address these issues, but require precise time synchronisation or are limited to certain traffic types. We introduce Synthetic Packet-Pairs (SPP), a novel passive technique for RTT measurement. SPP provides frequently updated RTT measurements using any network traffic already present in the network without the need for time synchronisation. SPP accurately measures the RTT experienced by any application's traffic, even applications that do not exhibit symmetric client-server packet exchanges. We experimentally demonstrate the advantages of SPP
    • 

    corecore