9,289 research outputs found

    Interactive Machine Learning with Applications in Health Informatics

    Full text link
    Recent years have witnessed unprecedented growth of health data, including millions of biomedical research publications, electronic health records, patient discussions on health forums and social media, fitness tracker trajectories, and genome sequences. Information retrieval and machine learning techniques are powerful tools to unlock invaluable knowledge in these data, yet they need to be guided by human experts. Unlike training machine learning models in other domains, labeling and analyzing health data requires highly specialized expertise, and the time of medical experts is extremely limited. How can we mine big health data with little expert effort? In this dissertation, I develop state-of-the-art interactive machine learning algorithms that bring together human intelligence and machine intelligence in health data mining tasks. By making efficient use of human expert's domain knowledge, we can achieve high-quality solutions with minimal manual effort. I first introduce a high-recall information retrieval framework that helps human users efficiently harvest not just one but as many relevant documents as possible from a searchable corpus. This is a common need in professional search scenarios such as medical search and literature review. Then I develop two interactive machine learning algorithms that leverage human expert's domain knowledge to combat the curse of "cold start" in active learning, with applications in clinical natural language processing. A consistent empirical observation is that the overall learning process can be reliably accelerated by a knowledge-driven "warm start", followed by machine-initiated active learning. As a theoretical contribution, I propose a general framework for interactive machine learning. Under this framework, a unified optimization objective explains many existing algorithms used in practice, and inspires the design of new algorithms.PHDComputer Science & EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttps://deepblue.lib.umich.edu/bitstream/2027.42/147518/1/raywang_1.pd

    Human Centered Computer Vision Techniques for Intelligent Video Surveillance Systems

    Get PDF
    Nowadays, intelligent video surveillance systems are being developed to support human operators in different monitoring and investigation tasks. Although relevant results have been achieved by the research community in several computer vision tasks, some real applications still exhibit several open issues. In this context, this thesis focused on two challenging computer vision tasks: person re-identification and crowd counting. Person re-identification aims to retrieve images of a person of interest, selected by the user, in different locations over time, reducing the time required to the user to analyse all the available videos. Crowd counting consists of estimating the number of people in a given image or video. Both tasks present several complex issues. In this thesis, a challenging video surveillance application scenario is considered in which it is not possible to collect and manually annotate images of a target scene (e.g., when a new camera installation is made by Law Enforcement Agency) to train a supervised model. Two human centered solutions for the above mentioned tasks are then proposed, in which the role of the human operators is fundamental. For person re-identification, the human-in-the-loop approach is proposed, which exploits the operator feedback on retrieved pedestrian images during system operation, to improve system's effectiveness. The proposed solution is based on revisiting relevance feedback algorithms for content-based image retrieval, and on developing a specific feedback protocol, to find a trade-off between the human effort and re-identification performance. For crowd counting, the use of a synthetic training set is proposed to develop a scene-specific model, based on a minimal amount of information of the target scene required to the user. Both solutions are empirically investigated using state-of-the-art supervised models based on Convolutional Neural Network, on benchmark data sets

    Online multi-modal distance metric learning with application to image retrieval

    Get PDF
    Singapore Ministry of Educatio

    Online multi-modal distance metric learning with application to image retrieval

    Get PDF
    Ministry of Education, Singapore under its Academic Research Funding Tier

    An affective computing and image retrieval approach to support diversified and emotion-aware reminiscence therapy sessions

    Get PDF
    A demĂȘncia Ă© uma das principais causas de dependĂȘncia e incapacidade entre as pessoas idosas em todo o mundo. A terapia de reminiscĂȘncia Ă© uma terapia nĂŁo farmacolĂłgica comummente utilizada nos cuidados com demĂȘncia devido ao seu valor terapĂȘutico para as pessoas com demĂȘncia. Esta terapia Ă© Ăștil para criar uma comunicação envolvente entre pessoas com demĂȘncia e o resto do mundo, utilizando as capacidades preservadas da memĂłria a longo prazo, em vez de enfatizar as limitaçÔes existentes por forma a aliviar a experiĂȘncia de fracasso e isolamento social. As soluçÔes tecnolĂłgicas de assistĂȘncia existentes melhoram a terapia de reminiscĂȘncia ao proporcionar uma experiĂȘncia mais envolvente para todos os participantes (pessoas com demĂȘncia, familiares e clĂ­nicos), mas nĂŁo estĂŁo livres de lacunas: a) os dados multimĂ©dia utilizados permanecem inalterados ao longo das sessĂ”es, e hĂĄ uma falta de personalização para cada pessoa com demĂȘncia; b) nĂŁo tĂȘm em conta as emoçÔes transmitidas pelos dados multimĂ©dia utilizados nem as reacçÔes emocionais da pessoa com demĂȘncia aos dados multimĂ©dia apresentados; c) a perspectiva dos cuidadores ainda nĂŁo foi totalmente tida em consideração. Para superar estes desafios, seguimos uma abordagem de concepção centrada no utilizador atravĂ©s de inquĂ©ritos mundiais, entrevistas de seguimento, e grupos de discussĂŁo com cuidadores formais e informais para informar a concepção de soluçÔes tecnolĂłgicas no Ăąmbito dos cuidados de demĂȘncia. Para cumprir com os requisitos identificados, propomos novos mĂ©todos que facilitam a inclusĂŁo de emoçÔes no loop durante a terapia de reminiscĂȘncia para personalizar e diversificar o conteĂșdo das sessĂ”es ao longo do tempo. As contribuiçÔes desta tese incluem: a) um conjunto de requisitos funcionais validados recolhidos com os cuidadores formais e informais, os resultados esperados com o cumprimento de cada requisito, e um modelo de arquitectura para o desenvolvimento de soluçÔes tecnolĂłgicas de assistĂȘncia para cuidados de demĂȘncia; b) uma abordagem end-to-end para identificar automaticamente mĂșltiplas informaçÔes emocionais transmitidas por imagens; c) uma abordagem para reduzir a quantidade de imagens que precisam ser anotadas pelas pessoas sem comprometer o desempenho dos modelos de reconhecimento; d) uma tĂ©cnica de fusĂŁo tardia interpretĂĄvel que combina dinamicamente mĂșltiplos sistemas de recuperação de imagens com base em conteĂșdo para procurar eficazmente por imagens semelhantes para diversificar e personalizar o conjunto de imagens disponĂ­veis para serem utilizadas nas sessĂ”es.Dementia is one of the major causes of dependency and disability among elderly subjects worldwide. Reminiscence therapy is an inexpensive non-pharmacological therapy commonly used within dementia care due to its therapeutic value for people with dementia. This therapy is useful to create engaging communication between people with dementia and the rest of the world by using the preserved abilities of long-term memory rather than emphasizing the existing impairments to alleviate the experience of failure and social isolation. Current assistive technological solutions improve reminiscence therapy by providing a more lively and engaging experience to all participants (people with dementia, family members, and clinicians), but they are not free of drawbacks: a) the multimedia data used remains unchanged throughout sessions, and there is a lack of customization for each person with dementia; b) they do not take into account the emotions conveyed by the multimedia data used nor the person with dementia’s emotional reactions to the multimedia presented; c) the caregivers’ perspective have not been fully taken into account yet. To overcome these challenges, we followed a usercentered design approach through worldwide surveys, follow-up interviews, and focus groups with formal and informal caregivers to inform the design of technological solutions within dementia care. To fulfil the requirements identified, we propose novel methods that facilitate the inclusion of emotions in the loop during reminiscence therapy to personalize and diversify the content of the sessions over time. Contributions from this thesis include: a) a set of validated functional requirements gathered from formal and informal caregivers, the expected outcomes with the fulfillment of each requirement, and an architecture’s template for the development of assistive technology solutions for dementia care; b) an end-to-end approach to automatically identify multiple emotional information conveyed by images; c) an approach to reduce the amount of images that need to be annotated by humans without compromising the recognition models’ performance; d) an interpretable late-fusion technique that dynamically combines multiple content-based image retrieval systems to effectively search for similar images to diversify and personalize the pool of images available to be used in sessions

    A Survey on Metric Learning for Feature Vectors and Structured Data

    Full text link
    The need for appropriate ways to measure the distance or similarity between data is ubiquitous in machine learning, pattern recognition and data mining, but handcrafting such good metrics for specific problems is generally difficult. This has led to the emergence of metric learning, which aims at automatically learning a metric from data and has attracted a lot of interest in machine learning and related fields for the past ten years. This survey paper proposes a systematic review of the metric learning literature, highlighting the pros and cons of each approach. We pay particular attention to Mahalanobis distance metric learning, a well-studied and successful framework, but additionally present a wide range of methods that have recently emerged as powerful alternatives, including nonlinear metric learning, similarity learning and local metric learning. Recent trends and extensions, such as semi-supervised metric learning, metric learning for histogram data and the derivation of generalization guarantees, are also covered. Finally, this survey addresses metric learning for structured data, in particular edit distance learning, and attempts to give an overview of the remaining challenges in metric learning for the years to come.Comment: Technical report, 59 pages. Changes in v2: fixed typos and improved presentation. Changes in v3: fixed typos. Changes in v4: fixed typos and new method

    Machine Learning for Information Retrieval

    Get PDF
    In this thesis, we explore the use of machine learning techniques for information retrieval. More specifically, we focus on ad-hoc retrieval, which is concerned with searching large corpora to identify the documents relevant to user queries. Thisidentification is performed through a ranking task. Given a user query, an ad-hoc retrieval system ranks the corpus documents, so that the documents relevant to the query ideally appear above the others. In a machine learning framework, we are interested in proposing learning algorithms that can benefit from limited training data in order to identify a ranker likely to achieve high retrieval performance over unseen documents and queries. This problem presents novel challenges compared to traditional learning tasks, such as regression or classification. First, our task is a ranking problem, which means that the loss for a given query cannot be measured as a sum of an individual loss suffered for each corpus document. Second, most retrieval queries present a highly unbalanced setup, with a set of relevant documents accounting only for a very small fraction of the corpus. Third, ad-hoc retrieval corresponds to a kind of ``double'' generalization problem, since the learned model should not only generalize to new documents but also to new queries. Finally, our task also presents challenging efficiency constraints, since ad-hoc retrieval is typically applied to large corpora. % The main objective of this thesis is to investigate the discriminative learning of ad-hoc retrieval models. For that purpose, we propose different models based on kernel machines or neural networks adapted to different retrieval contexts. The proposed approaches rely on different online learning algorithms that allow efficient learning over large corpora. The first part of the thesis focus on text retrieval. In this case, we adopt a classical approach to the retrieval ranking problem, and order the text documents according to their estimated similarity to the text query. The assessment of semantic similarity between text items plays a key role in that setup and we propose a learning approach to identify an effective measure of text similarity. This identification is not performed relying on a set of queries with their corresponding relevant document sets, since such data are especially expensive to label and hence rare. Instead, we propose to rely on hyperlink data, since hyperlinks convey semantic proximity information that is relevant to similarity learning. This setup is hence a transfer learning setup, where we benefit from the proximity information encoded by hyperlinks to improve the performance over the ad-hoc retrieval task. We then investigate another retrieval problem, i.e. the retrieval of images from text queries. Our approach introduces a learning procedure optimizing a criterion related to the ranking performance. This criterion adapts our previous learning objective for learning textual similarity to the image retrieval problem. This yields an image ranking model that addresses the retrieval problem directly. This approach contrasts with previous research that rely on an intermediate image annotation task. Moreover, our learning procedure builds upon recent work on the online learning of kernel-based classifiers. This yields an efficient, scalable algorithm, which can benefit from recent kernels developed for image comparison. In the last part of the thesis, we show that the objective function used in the previous retrieval problems can be applied to the task of keyword spotting, i.e. the detection of given keywords in speech utterances. For that purpose, we formalize this problem as a ranking task: given a keyword, the keyword spotter should order the utterances so that the utterances containing the keyword appear above the others. Interestingly, this formulation yields an objective directly maximizing the area under the receiver operating curve, the most common keyword spotter evaluation measure. This objective is then used to train a model adapted to this intrinsically sequential problem. This model is then learned with a procedure derived from the algorithm previously introduced for the image retrieval task. To conclude, this thesis introduces machine learning approaches for ad-hoc retrieval. We propose learning models for various multi-modal retrieval setups, i.e. the retrieval of text documents from text queries, the retrieval of images from text queries and the retrieval of speech recordings from written keywords. Our approaches rely on discriminative learning and enjoy efficient training procedures, which yields effective and scalable models. In all cases, links with prior approaches were investigated and experimental comparisons were conducted

    Online Multiple Kernel Similarity Learning for Visual Search

    Get PDF
    • 

    corecore