20,876 research outputs found

    Master of Science

    Get PDF
    thesisThis thesis focuses on the design, modeling, fabrication, and testing of a ?ying and walking robot, called the Dynamic Underactuated Flying-Walking (DUCK) robot. The DUCK robot combines a high-mobility ?ying platform, such as a quadcopter (quadrotor helicopter), with passive-dynamic legs to create a versatile system that can ?y and walk. One of the advantages of using passive-dynamic legs for walking is that additional actuators are not needed for terrestrial locomotion, therefore simplifying the design, reducing overall weight, and decreasing power consumption. First, a mathematical model is developed for the DUCK robot, where the modeling combines the passive-dynamic walking mechanism with the swinging mass of the aerial platform. Second, simulations based on the model are used to help guide the design of two prototype robots, speci?cally to tailor the shape of the feet and the dimensions of the passive-dynamic walking mechanism. Third, an energy analysis is performed to compare the performances between ?ying and walking. More specifically, simulation results show that continuous active walking has a comparable energy efficiency to that of flying for the two prototype designs. For design Version 1, it is estimated that the robot is able to walk up to 1600 meters on a 30kJ battery (standard Li-Po battery) with a cost of transport of 1.0, while the robot can potentially fly up to 1800 meters horizontally with the weight of its legs and up to 2300 meters without the weight of its legs. Design Version 2 is estimated to be able to walk up to 4600 meters on a 30kJ battery with a cost of transport of .50, while it could fly up to 2600 meters with the weight of its legs or 4300 meters without its legs. The cost of transport of flying is estimated to be .89 in all scenarios. Finally, experimental results demonstrate the feasibility of combining an aerial platform with passive-dynamic legs to create an effective flying and walking robot. Two modes of walking are experimentally demonstrated: (1) passive walking down inclined surfaces for low-energy terrestrial locomotion and (2) active (powered) walking leveraging the capabilities of the flying platform, where thrust from the quadcopter's rotors enables the DUCK robot to walk on flat surfaces or up inclined surfaces

    Asymptotically Stable Walking of a Five-Link Underactuated 3D Bipedal Robot

    Get PDF
    This paper presents three feedback controllers that achieve an asymptotically stable, periodic, and fast walking gait for a 3D (spatial) bipedal robot consisting of a torso, two legs, and passive (unactuated) point feet. The contact between the robot and the walking surface is assumed to inhibit yaw rotation. The studied robot has 8 DOF in the single support phase and 6 actuators. The interest of studying robots with point feet is that the robot's natural dynamics must be explicitly taken into account to achieve balance while walking. We use an extension of the method of virtual constraints and hybrid zero dynamics, in order to simultaneously compute a periodic orbit and an autonomous feedback controller that realizes the orbit. This method allows the computations to be carried out on a 2-DOF subsystem of the 8-DOF robot model. The stability of the walking gait under closed-loop control is evaluated with the linearization of the restricted Poincar\'e map of the hybrid zero dynamics. Three strategies are explored. The first strategy consists of imposing a stability condition during the search of a periodic gait by optimization. The second strategy uses an event-based controller. In the third approach, the effect of output selection is discussed and a pertinent choice of outputs is proposed, leading to stabilization without the use of a supplemental event-based controller

    Realisation of an energy efficient walking robot

    Get PDF
    In this video the walking robot ‘Dribbel’ is presented, which has been built at the Control Engineering group of the University of Twente, the Netherlands. This robot has been designed with a focus on minimal energy consumption, using a passive dynamic approach. It is a so-called four-legged 2D walker; the use of four legs prevents it from falling sideways. During the design phase extensive use has been made of 20-sim. This power port based modeling package was used to simulate the dynamic behaviour of the robot in order to estimate the design parameters for the prototype. The parameters obtained by the simulation were then used as a basis for the real robot. The real robot is made of aluminum and weighs 9.5 kg. Each of the nine joints (one hip, four knees, four feet) has a dedicated electronic driver board for interfacing the joint sensors. For walking a simple control loop is used: when the front feet touch the ground, the rear legs are swung forward. The control parameters can be adjusted online using a serial link. Using this simple control loop, the robot walks at a speed of 1.2 km/h and a step frequency of 1.1 Hz. The hip actuator consumes 6.7 W. The walking behaviour of the robot is very similar to the simulation, regarding both walking motion and power consumption. With the serial link real time data acquisition in the simulation package (running on the PC) is possible. This allows for advanced verification and fine tuning of the control algorithm. The simulation package can also be used directly within the control loop. Future research is planned on energy based control of the walking motion, using impedance control for the hip actuator and design of more advanced (and actuated) foot shapes

    Active Disturbance Rejection Control based on Generalized Proportional Integral Observer to Control a Bipedal Robot with Five Degrees of Freedom

    Get PDF
    An Active Disturbance Rejection Control based on Generalized Proportional Integral observer (ADRC with GPI observer) was developed to control the gait of a bipedal robot with five degrees of freedom. The bipedal robot used is a passive point feet which produces an underactuated dynamic walking. A virtual holonomic constraint is imposed to generate online smooth trajectories which were used as references of the control system. The proposed control strategy is tested through numerical simulation on a task of forward walking with the robot exposed to external disturbances. The performance of ADRC with GPI observer strategy is compared with a feedback linearization with proportional-derivative control. A stability test consisting on analyzing the existence of limit cycles using the Poincaré's method revealed that asymptotically stable walking was achieved. The proposed control strategy effectively rejects the external disturbances and keeps the robot in a stable dynamic walking

    Knee design for a bipedal walking robot based on a passive-dynamic walker

    Get PDF
    Thesis (S.B.)--Massachusetts Institute of Technology, Dept. of Mechanical Engineering, 2005.Includes bibliographical references (leaf 30).Passive-dynamic walkers are a class of robots that can walk down a ramp stably without actuators or control due to the mechanical dynamics of the robot. Using a passive-dynamic design as the basis for a powered robot helps to simplify the control problem and maximize energy efficiency compared to the traditional joint-angle control strategy. This thesis outlines the design of a knee for the robot known as Toddler, a passive-dynamic based powered walker built at the Massachusetts Institute of Technology. An actuator at the knee allows the robot to bend and straighten the leg, but a clutch mechanism allows the actuator to completely disengage so that the leg can swing freely. The clutch operates by using a motor to rotate a lead screw which engages or disengages a set of spur gears. Control of the knee is accomplished by utilizing the robot's sensors to determine whether or not the knee should be engaged. The engagement signal is then fed through a simple motor control circuit which controls the motor that turns the lead screw. The knee design was successfully implemented on Toddler but more work is required in order to optimize his walking. In order to study the dynamics of walking with knees, we also built a copy of McGeer's original passive walker with knees.by Andrew Griffin Baines.S.B

    Generating walking behaviours in legged robots

    Get PDF
    Many legged robots have boon built with a variety of different abilities, from running to liopping to climbing stairs. Despite this however, there has been no consistency of approach to the problem of getting them to walk. Approaches have included breaking down the walking step into discrete parts and then controlling them separately, using springs and linkages to achieve a passive walking cycle, and even working out the necessary movements in simulation and then imposing them on the real robot. All of these have limitations, although most were successful at the task for which they were designed. However, all of them fall into one of two categories: either they alter the dynamics of the robots physically so that the robot, whilst very good at walking, is not as general purpose as it once was (as with the passive robots), or they control the physical mechanism of the robot directly to achieve their goals, and this is a difficult task.In this thesis a design methodology is described for building controllers for 3D dynam¬ ically stable walking, inspired by the best walkers and runners around — ourselves — so the controllers produced are based 011 the vertebrate Central Nervous System. This means that there is a low-level controller which adapts itself to the robot so that, when switched on, it can be considered to simulate the springs and linkages of the passive robots to produce a walking robot, and this now active mechanism is then controlled by a relatively simple higher level controller. This is the best of both worlds — we have a robot which is inherently capable of walking, and thus is easy to control like the passive walkers, but also retains the general purpose abilities which makes it so potentially useful.This design methodology uses an evolutionary algorithm to generate low-level control¬ lers for a selection of simulated legged robots. The thesis also looks in detail at previous walking robots and their controllers and shows that some approaches, including staged evolution and hand-coding designs, may be unnecessary, and indeed inappropriate, at least for a general purpose controller. The specific algorithm used is evolutionary, using a simple genetic algorithm to allow adaptation to different robot configurations, and the controllers evolved are continuous time neural networks. These are chosen because of their ability to entrain to the movement of the robot, allowing the whole robot and network to be considered as a single dynamical system, which can then be controlled by a higher level system.An extensive program of experiments investigates the types of neural models and net¬ work structures which are best suited to this task, and it is shown that stateless and simple dynamic neural models are significantly outperformed as controllers by more complex, biologically plausible ones but that other ideas taken from biological systems, including network connectivities, are not generally as useful and reasons for this are examined.The thesis then shows that this system, although only developed 011 a single robot, is capable of automatically generating controllers for a wide selection of different test designs. Finally it shows that high level controllers, at least to control steering and speed, can be easily built 011 top of this now active walking mechanism

    Design Optimization, Analysis, and Control of Walking Robots

    Get PDF
    Passive dynamic walking refers to the dynamical behavior of mechanical devices that are able to naturally walk down a shallow slope in a stable manner, without using actuation or sensing of any kind. Such devices can attain motions that are remarkably human-like by purely exploiting their natural dynamics. This suggests that passive dynamic walking machines can be used to model and study human locomotion; however, there are two major limitations: they can be difficult to design, and they cannot walk on level ground or uphill without some kind of actuation. This thesis presents a mechanism design optimization framework that allows the designer to find the best design parameters based on the chosen performance metric(s). The optimization is formulated as a convex problem, where its solutions are globally optimal and can be obtained efficiently. To enable locomotion on level ground and uphill, this thesis studies a robot based on a passive walker: the rimless wheel with an actuated torso. We design and validate two control policies for the robot through the use of scalable methodology based on tools from mathematical analysis, optimization theory, linear algebra, differential equations, and control theory

    Evolutionary Ground Reaction Force Control of a Prosthetic Leg Testing Robot

    Get PDF
    Typical tests of prosthetic legs for transfemoral amputees prove to be cumbersome and tedious. These tests are burdened by acclimation time, lack of repeatability between subjects, and the use of complex gait analysis labs to collect data. To create a new method for prosthesis testing, we design and construct a robot that can simulate the motion of a human hip. We discuss the robot from concept to completion, including methods for modeling and control design. Two single-input-single-output (SISO) sliding mode controllers are developed using analytical and experimental methods. We use human gait data as reference inputs to the controller. When doing so we see the problems associated with the gait data that make it unfit for use as reference data. We apply a smoothing algorithm to correct the gait data. The robot is evaluated based on its ability to track the gait data. Despite proper tracking of the reference inputs, operating the robot with a passive prosthesis shows that the robot cannot adequately produce the ground reaction force (GRF) of an able bodied person. We devise a novel method to control GRF of the robot/prosthesis combination based on the way that human subjects walk with a prostheses. When walking with a prosthesis, users compensate for the deficiencies of the prosthesis by modifying their gait patterns. To simulate this we use an evolutionary algorithm called biogeography-based optimization (BBO). We use BBO to modify the reference inputs of the robot, minimizing the error between the able-bodied GRF data and that of the robot walking with the passive prosthesis. Experimental results show a 62 decrease in the GRF error, effectively showing the robot\u27s compensation for the prosthesis and improved control of GR

    Dynamic walking with Dribbel

    Get PDF
    This paper describes the design and construction of Dribbel, a passivity-based walking robot. Dribbel has been designed and built at the Control Engineering group of the University of Twente. This paper focuses on the practical side: the design approach, construction, electronics, and software design. After a short introduction of dynamic walking, the design process, starting with simulation, is discussed
    corecore