430 research outputs found

    Remote Sensing for Precision Nitrogen Management

    Get PDF
    This book focuses on the fundamental and applied research of the non-destructive estimation and diagnosis of crop leaf and plant nitrogen status and in-season nitrogen management strategies based on leaf sensors, proximal canopy sensors, unmanned aerial vehicle remote sensing, manned aerial remote sensing and satellite remote sensing technologies. Statistical and machine learning methods are used to predict plant-nitrogen-related parameters with sensor data or sensor data together with soil, landscape, weather and/or management information. Different sensing technologies or different modelling approaches are compared and evaluated. Strategies are developed to use crop sensing data for in-season nitrogen recommendations to improve nitrogen use efficiency and protect the environment

    High-throughput estimation of crop traits: A review of ground and aerial phenotyping platforms

    Get PDF
    Crop yields need to be improved in a sustainable manner to meet the expected worldwide increase in population over the coming decades as well as the effects of anticipated climate change. Recently, genomics-assisted breeding has become a popular approach to food security; in this regard, the crop breeding community must better link the relationships between the phenotype and the genotype. While high-throughput genotyping is feasible at a low cost, highthroughput crop phenotyping methods and data analytical capacities need to be improved. High-throughput phenotyping offers a powerful way to assess particular phenotypes in large-scale experiments, using high-tech sensors, advanced robotics, and imageprocessing systems to monitor and quantify plants in breeding nurseries and field experiments at multiple scales. In addition, new bioinformatics platforms are able to embrace large-scale, multidimensional phenotypic datasets. Through the combined analysis of phenotyping and genotyping data, environmental responses and gene functions can now be dissected at unprecedented resolution. This will aid in finding solutions to currently limited and incremental improvements in crop yields

    Digital phenotyping and genotype-to-phenotype (G2P) models to predict complex traits in cereal crops

    Get PDF
    The revolution in digital phenotyping combined with the new layers of omics and envirotyping tools offers great promise to improve selection and accelerate genetic gains for crop improvement. This chapter examines the latest methods involving digital phenotyping tools to predict complex traits in cereals crops. The chapter has two parts. In the first part, entitled “Digital phenotyping as a tool to support breeding programs”, the secondary phenotypes measured by high-throughput plant phenotyping that are potentially useful for breeding are reviewed. In the second part, “Implementing complex G2P models in breeding programs”, the integration of data from digital phenotyping into genotype to phenotype (G2P) models to improve the prediction of complex traits using genomic information is discussed. The current status of statistical models to incorporate secondary traits in univariate and multivariate models, as well as how to better handle longitudinal (for example light interception, biomass accumulation, canopy height) traits, is reviewe

    Site-specific seeding using multi-sensor and data fusion techniques : a review

    No full text
    Site-specific seeding (SSS) is a precision agricultural (PA) practice aiming at optimizing seeding rate and depth, depending on the within field variability in soil fertility and yield potential. Unlike other site-specific applications, SSS was not adopted sufficiently by farmers due to some technological and practical challenges that need to be overcome. Success of site-specific application strongly depends on the accuracy of measurement of key parameters in the system, modeling and delineation of management zone maps, accurate recommendations and finally the right choice of variable rate (VR) technologies and their integrations. The current study reviews available principles and technologies for both map-based and senor-based SSS. It covers the background of crop and soil quality indicators (SQI), various soil and crop sensor technologies and recommendation approaches of map-based and sensor-based SSS applications. It also discusses the potential of socio-economic benefits of SSS against uniform seeding. The current review proposes prospective future technology synthesis for implementation of SSS in practice. A multi-sensor data fusion system, integrating proper sensor combinations, is suggested as an essential approach for putting SSS into practice

    Advances in field-based high-throughput photosynthetic phenotyping

    Get PDF
    Gas exchange techniques revolutionized plant research and advanced understanding, including associated fluxes and efficiencies, of photosynthesis, photorespiration, and respiration of plants from cellular to ecosystem scales. These techniques remain the gold standard for inferring photosynthetic rates and underlying physiology/biochemistry, although their utility for high-throughput phenotyping (HTP) of photosynthesis is limited both by the number of gas exchange systems available and the number of personnel available to operate the equipment. Remote sensing techniques have long been used to assess ecosystem productivity at coarse spatial and temporal resolutions, and advances in sensor technology coupled with advanced statistical techniques are expanding remote sensing tools to finer spatial scales and increasing the number and complexity of phenotypes that can be extracted. In this review, we outline the photosynthetic phenotypes of interest to the plant science community and describe the advances in high-throughput techniques to characterize photosynthesis at spatial scales useful to infer treatment or genotypic variation in field-based experiments or breeding trials. We will accomplish this objective by presenting six lessons learned thus far through the development and application of proximal/remote sensing-based measurements and the accompanying statistical analyses. We will conclude by outlining what we perceive as the current limitations, bottlenecks, and opportunities facing HTP of photosynthesis

    The inverse relationship between solar-induced fluorescence yield and photosynthetic capacity: Benefits for field phenotyping

    Get PDF
    Improving photosynthesis is considered a promising way to increase crop yield to feed a growing population. Realizing this goal requires non-destructive techniques to quantify photosynthetic variation among crop cultivars. Despite existing remote sensing-based approaches, it remains a question whether solar-induced fluorescence (SIF) can facilitate screening crop cultivars of improved photosynthetic capacity in plant breeding trials. Here we tested a hypothesis that SIF yield rather than SIF had a better relationship with the maximum electron transport rate (Jmax). Time-synchronized hyperspectral images and irradiance spectra of sunlight under clear-sky conditions were combined to estimate SIF and SIF yield, which were then correlated with ground-truth Vcmax and Jmax. With observations binned over time (i.e. group 1: 6, 7, and 12 July 2017; group 2: 31 July and 18 August 2017; and group 3: 24 and 25 July 2018), SIF yield showed a stronger negative relationship, compared with SIF, with photosynthetic variables. Using SIF yield for Jmax (Vcmax) predictions, the regression analysis exhibited an R2 of 0.62 (0.71) and root mean square error (RMSE) of 11.88 (46.86) μmol m-2 s-1 for group 1, an R2 of 0.85 (0.72) and RMSE of 13.51 (49.32) μmol m-2 s-1 for group 2, and an R2 of 0.92 (0.87) and RMSE of 15.23 (30.29) μmol m-2 s-1 for group 3. The combined use of hyperspectral images and irradiance measurements provides an alternative yet promising approach to characterization of photosynthetic parameters at plot level

    Linking Remote Sensing with APSIM through Emulation and Bayesian Optimization to Improve Yield Prediction

    Get PDF
    The enormous increase in the volume of Earth Observations (EOs) has provided the scientific community with unprecedented temporal, spatial, and spectral information. However, this increase in the volume of EOs has not yet resulted in proportional progress with our ability to forecast agricultural systems. This study examines the applicability of EOs obtained from Sentinel-2 and Landsat-8 for constraining the APSIM-Maize model parameters. We leveraged leaf area index (LAI) retrieved from Sentinel-2 and Landsat-8 NDVI (Normalized Difference Vegetation Index) to constrain a series of APSIM-Maize model parameters in three different Bayesian multi-criteria optimization frameworks across 13 different calibration sites in the U.S. Midwest. The novelty of the current study lies in its approach in providing a mathematical framework to directly integrate EOs into process-based models for improved parameter estimation and system representation. Thus, a time variant sensitivity analysis was performed to identify the most influential parameters driving the LAI (Leaf Area Index) estimates in APSIM-Maize model. Then surrogate models were developed using random samples taken from the parameter space using Latin hypercube sampling to emulate APSIM’s behavior in simulating NDVI and LAI at all sites. Site-level, global and hierarchical Bayesian optimization models were then developed using the site-level emulators to simultaneously constrain all parameters and estimate the site to site variability in crop parameters. For within sample predictions, site-level optimization showed the largest predictive uncertainty around LAI and crop yield, whereas the global optimization showed the most constraint predictions for these variables. The lowest RMSE within sample yield prediction was found for hierarchical optimization scheme (1423 Kg ha−1) while the largest RMSE was found for site-level (1494 Kg ha−1). In out-of-sample predictions for within the spatio-temporal extent of the training sites, global optimization showed lower RMSE (1627 Kg ha−1) compared to the hierarchical approach (1822 Kg ha−1) across 90 independent sites in the U.S. Midwest. On comparison between these two optimization schemes across another 242 independent sites outside the spatio-temporal extent of the training sites, global optimization also showed substantially lower RMSE (1554 Kg ha−1) as compared to the hierarchical approach (2532 Kg ha−1). Overall, EOs demonstrated their real use case for constraining process-based crop models and showed comparable results to model calibration exercises using only field measurements

    Assessing the Efficiency of Remote Sensing and Machine Learning Algorithms to Quantify Wheat Characteristics in the Nile Delta Region of Egypt

    Get PDF
    Monitoring strategic agricultural crops in terms of crop growth performance, by accurate cost-effective and quick tools is crucially important in site-specific management to avoid crop reductions. The availability of commercial high resolution satellite images with high resolution (spatial and spectral) as well as in situ spectra measurements can help decision takers to have deep insight on crop stress in a certain region. The research attempts to examine remote sensing dataset for forecasting wheat crop (Sakha 61) characteristics including the leaf area index (LAI), plant height (plant-h), above ground biomass (AGB) and Soil Plant Analysis Development (SPAD) value of wheat across non-stress, drought and salinity-induced stress in the Nile Delta region. In this context, the ability of in situ spectroradiometry measurements and QuickBird high resolution images was evaluated in our research. The efficiency of Random Forest (RF) and Artificial Neural Network (ANN), mathematical models was assessed to estimate the four measured wheat characteristics based on vegetation spectral reflectance indices (V-SRIs) extracted from both approaches and their interactions. Field surveys were carried out to collect in situ spectroradiometry measurements concomitant with the acquisition of QuickBird imagery. The results demonstrated that several V-SRIs extracted from in situ spectroradiometry data and the QuickBird image correlated with the LAI, plant-h, AGB, and SPAD value of wheat crop across the study site. The determination coefficient (R2) values of the association between V-SRIs of in situ spectroradiometry data and various determined wheat characteristics varied from 0.26 to 0.85. The ANN-GSIs-3 was found to be the optimum predictive model, demonstrating a greater relationship between the advanced features and LAI. The three features of V-SRIs comprised in this model were strongly significant for the prediction of LAI. The attained results indicated high R2 values of 0.94 and 0.86 for the training and validation phases. The ANN-GSIs-3 model constructed for the determination of chlorophyll in the plant which had higher performance expectations (R2 = 0.96 and 0.92 for training and validation datasets, respectively). In conclusion, the results of our study revealed that high resolution remote sensing images such as QuickBird or similar imagery, and in situ spectroradiometry measurements have the feasibility of providing necessary crop monitoring data across non-stressed and stressed (drought and salinity) conditions when integrating V-SRIs with ANN and RF algorithms

    Hyperspectral Remote Sensing of Crop Canopy Chlorophyll and Nitrogen: The Relative Importance of Growth Stages

    Get PDF
    Remote sensing plays an important role in monitoring vegetation dynamics, and has been recognized as a reliable tool for monitoring biochemical and biophysical variations of agricultural crops, such as plant biomass, height, chlorophyll (Chl) and nitrogen (N). Nitrogen is one of the most essential elements in agro-ecosystems because of its direct role in determining crop yield and vegetation productivity, as well as its association with global N and carbon cycles. Canopy remote sensing of plant biochemical (e.g., N) and biophysical parameters (e.g., biomass) is often discussed separately. However, crop canopy structural characteristics and plant morphophysiological variations at different growth stages cause a confounding effect on the analysis and interpretation of the canopy spectral data. This study aimed to (1) understand the underlying mechanisms of canopy structural dynamics (mainly plant biomass and green leaf area) that impact the retrieval of canopy Chl and N at different growth stages, and (2) develop new algorithms and narrow band vegetation indices that may improve the estimation of Chl and N using hyperspectral data collected in the field and simulated by radiative transfer models (RTMs). To achieve the objectives, barley and rice experiments were conducted in Germany and China, respectively, from experimental plots to farmer fields; both empirical and physical models were employed but with an emphasis on the empirical methods. Results suggest that canopy hyperspectral data allow for the estimation of canopy Chl and N. However, with the advance of growth stages, plant growth rate is much faster than the rate at which N is accumulated in the plant mass until the stage of full heading (canopy closure), which results in a decrease of N concentration — the N dilution effect. Thus, growth stages have a significant effect on the correlation between the optical and biological traits of the crop canopy compared to the differences in crop cultivars and types. This effect is confirmed by five years of experimental data of barley and rice crops. Accordingly, empirical models based on different vegetation indices can be calibrated, before and after the canopy closure, which allows for the monitoring of canopy Chl and N status through the entire growing season. This study also suggests that multivariate models such as partial least squares (PLS) and support vector machines (SVM) are relatively resistant to the influence of growth stages and can be used to improve the estimation of canopy Chl and N compared to univariate models based on vegetation indices. To devise a simple approach for the estimation of canopy Chl and N status that is relatively insensitive to the confounding effect of canopy structural characteristics, new vegetation indices, the Ratio of Reflectance Difference Indices (RRDIs), were developed based on the multiple scatter correction (MSC) theory. This type of indices conceptually eliminates the linear influence caused by the confounding effect of multiple scattering and soil background as well as their interactions; therefore, RRDI weakens the effect of canopy structural variations on the analysis of canopy spectra when estimating biochemical variations. For example, the RRDI derived from the red edge (RRDIre) wavelengths proved to be a robust indicator of canopy Chl and N in both barley and rice crops with different cultivars and for the simulated data by RTMs. Therefore, the method is useful for improving the estimation of canopy biochemical parameters. This study improves the understanding of remote estimation of canopy Chl and N status by considering the dynamical co-variations between plant biomass and N across different growth stages and suggests the potential to improve the ability of canopy hyperspectral data to monitor the canopy biogeochemical cycles of agro-ecosystems using remote sensing. Additionally, this study indicates that hyperspectral vegetation indices based on water absorption bands are useful for the detection of crop diseases at the canopy level
    corecore