1,323 research outputs found

    INVESTIGATION OF DATA PROCESSING FOR PASSIVE ACCOUSTIC AND ELECTROMAGNETIC UNDERWATER LOCALISATION AND CLASSIFICATION

    Get PDF
    In our earlier work, data fusion with specific application to underwater tracking environment is explored. The target can be tracked using array bearings, while it is moving with constant velocity and maneuvering occasionally. In this paper, it is shown that if data fusion is carried out using the bearing measurements available from Towed Array (TA) along with hull mounted array‟s bearings, then tracking of a continuously moving target can be carried out easily. This algorithm is independent of ownship maneuver for the observability of the process. Song and Speyer's & Galkowski and Islam‟s modified gain algorithms are utilized with some modifications for estimation. Monte Carlo simulation is performed and results are shown for various typical geometries

    OPTIMAL RECURSIVE DATA PROCESSING ALGORITHM USING BAYESIAN INFERENCE FOR UNDERWATER VEHICLE LOCALISATION AND NAVIGATION SYSTEMS

    Get PDF
    In the ocean environment, two dimensional Range & Bearings target motion analysis (TMA) is generally used. In the underwater scenario, the active sonar, positioned on a observer, is capable of sensing the sound waves reflected from the target in water. The sonar sensors in the water pick up the target reflected signal in the active mode. The observer is assumed to be moving in straight line and the target is assumed to be moving mostly in straight line with maneuver occasionally. The observer processes the measurements and estimates the target motion parameters, viz., Range, Bearing, Course and Speed of the target. It also generates the validity of each of these parameters. Here we try to apply Kalman Filter for the sea scenario using the input estimation technique to detect target maneuver, estimate target acceleration and correct the target state vector accordingly.              There are mainly two versions of Kalman Filter – a linearised Kalman Filter (LKF) in which polar measurements are converted into Cartesian coordinates and the well-known Extended Kalman Filter (EKF). Recently S. T. Pork and L. E. Lee presented a detailed theoretical comparative study of the above two methods and stated that both the methods perform well. Here, EKF is used through out

    Male sperm whale acoustic behavior observed from multipaths at a single hydrophone

    Get PDF
    Sperm whales generate transient sounds (clicks) when foraging. These clicks have been described as echolocation sounds, a result of having measured the source level and the directionality of these signals and having extrapolated results from biosonar tests made on some small odontocetes. The authors propose a passive acoustic technique requiring only one hydrophone to investigate the acoustic behavior of free-ranging sperm whales. They estimate whale pitch angles from the multipath distribution of click energy. They emphasize the close bond between the sperm whale’s physical and acoustic activity, leading to the hypothesis that sperm whales might, like some small odontocetes, control click level and rhythm. An echolocation model estimating the range of the sperm whale’s targets from the interclick interval is computed and tested during different stages of the whale’s dive. Such a hypothesis on the echolocation process would indicate that sperm whales echolocate their prey layer when initiating their dives and follow a methodic technique when foraging

    A survey of localization in wireless sensor network

    Get PDF
    Localization is one of the key techniques in wireless sensor network. The location estimation methods can be classified into target/source localization and node self-localization. In target localization, we mainly introduce the energy-based method. Then we investigate the node self-localization methods. Since the widespread adoption of the wireless sensor network, the localization methods are different in various applications. And there are several challenges in some special scenarios. In this paper, we present a comprehensive survey of these challenges: localization in non-line-of-sight, node selection criteria for localization in energy-constrained network, scheduling the sensor node to optimize the tradeoff between localization performance and energy consumption, cooperative node localization, and localization algorithm in heterogeneous network. Finally, we introduce the evaluation criteria for localization in wireless sensor network

    Position and Orientation Estimation of a Rigid Body: Rigid Body Localization

    Full text link
    Rigid body localization refers to a problem of estimating the position of a rigid body along with its orientation using anchors. We consider a setup in which a few sensors are mounted on a rigid body. The absolute position of the rigid body is not known, but, the relative position of the sensors or the topology of the sensors on the rigid body is known. We express the absolute position of the sensors as an affine function of the Stiefel manifold and propose a simple least-squares (LS) estimator as well as a constrained total least-squares (CTLS) estimator to jointly estimate the orientation and the position of the rigid body. To account for the perturbations of the sensors, we also propose a constrained total least-squares (CTLS) estimator. Analytical closed-form solutions for the proposed estimators are provided. Simulations are used to corroborate and analyze the performance of the proposed estimators.Comment: 4 pages and 1 reference page; 3 Figures; In Proc. of ICASSP 201

    INVESTIGATION OF NON-LINEAR MARITIME SIGNAL ESTIMATION SCHEME FOR PASSIVE ACOUSTIC AND ELECTROMAGNETIC UNDERWATER TRACKING AND UNDERWATER SURVEILLANCE

    Get PDF
    Objectives:Modified Gain Extended Kalman Filter (MGEKF) created by Song and Speyer [1] was turned out to be appropriate calculation for points just detached target following applications in air.Methods:As of late, roughly altered increases are displayed, which are numerically steady and exact [2]. In this paper, this enhanced MGEKF calculation is investigated for submerged applications with a few changes.Results:In submerged, the commotion in the estimations is high, turning rate of the stages is low and speed of the stages is likewise low when contrasted and the rockets in air. These attributes of the stage are concentrated on in detail and the calculation is adjusted appropriately to track applications in submerged.Conclusions:Monte-Carlo analysis comes about for two run of the mill situations are introduced with the end goal of clarification. From the outcomes it is watched that this calculation is especially reasonable for this nonlinear edges just detached target following

    Biomimetic oscillating foil propulsion to enhance underwater vehicle agility and maneuverability

    Get PDF
    Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution June 2008Inspired by the swimming abilities of marine animals, this thesis presents "Finnegan the RoboTurtle", an autonomous underwater vehicle (AUV) powered entirely by four flapping foils. Biomimetic actuation is shown to produce dramatic improvements in AUV maneuvering at cruising speeds, while simultaneously allowing for agility at low speeds. Using control algorithms linear in the modified Rodrigues parameters to support large angle maneuvers, the vehicle is successfully controlled in banked and twisting turns, exceeding the best reported AUV turning performance by more than a factor of two; a minimum turning radius of 0.7BL, and the ability to avoid walls detected> 1.8BL ahead, are found for cruising speeds of 0.75BL/S, with a maximum heading rate of 400 / S recorded. Observations of "Myrtle", a 250kg Green sea turtle (Chelonia mydas) at the New England Aquarium, are detailed; along with steady swimming, Myrtle is observed performing 1800 level turns and rapidly actuating pitch to control depth and speed. Limb kinematics for the level turning maneuver are replicated by Finnegan, and turning rates comparable to those of the turtle are achieved. Foil kinematics which produce approximately sinusoidal nominal angle of attack trace are shown to improve turning performance by as much as 25%; the effect is achieved despite limited knowledge of the flow field. Finally, tests with a single foil are used to demonstrate that biomimetically inspired inline motion can allow oscillating foils utilizing a power/recovery style stroke to generate as much as 90% of the thrust from a power/power stroke style motion

    Electrocommunication for weakly electric fish

    Full text link
    This paper addresses the problem of the electro-communication for weakly electric fish. In particular we aim at sheding light on how the fish circumvent the jamming issue for both electro-communication and active electro-sensing. A real-time tracking algorithm is presented
    corecore