195 research outputs found

    Calibration and Analysis of Enterprise and Edge Network Measurements

    Get PDF
    With the growth of the Internet over the past several decades, the field of Internet and network measurements has attracted the attention of many researchers. Doing the measurements has allowed a better understanding of the inner workings of both the global Internet and its specific parts. But undertaking a measurement study in a sound fashion is no easy task. Given the complexity of modern networks, one has to take great care in anticipating, detecting and eliminating all the measurement errors and biases. In this thesis we pave the way for a more systematic calibration of network traces. Such calibration ensures the soundness and robustness of the analysis results by revealing and fixing flaws in the data. We collect our measurement data in two environments: in a medium-sized enterprise and at the Internet edge. For the former we perform two rounds of data collection from the enterprise switches. We use the differences in the way we recorded the network traces during the first and second rounds to develop and assess the methodology for five calibration aspects: measurement gain, measurement loss, measurement reordering, timing, and topology. For the dataset gathered at the Internet edge, we perform calibration in the form of extensive checks of data consistency and sanity. After calibrating the data, we engage in the analysis of its various aspects. For the enterprise dataset we look at TCP dynamics in the enterprise environment. Here we first make a high- level overview of TCP connection characteristics such as termination status, size, duration, rate, etc. Then we assess the parameters important for TCP performance, such as retransmissions, out-of-order deliveries and channel utilization. Finally, using the Internet edge dataset, we gauge the performance characteristics of the edge connectivity

    Comnet: Annual Report 2012

    Get PDF

    Design and Implementation of Algorithms for Traffic Classification

    Get PDF
    Traffic analysis is the practice of using inherent characteristics of a network flow such as timings, sizes, and orderings of the packets to derive sensitive information about it. Traffic analysis techniques are used because of the extensive adoption of encryption and content-obfuscation mechanisms, making it impossible to infer any information about the flows by analyzing their content. In this thesis, we use traffic analysis to infer sensitive information for different objectives and different applications. Specifically, we investigate various applications: p2p cryptocurrencies, flow correlation, and messaging applications. Our goal is to tailor specific traffic analysis algorithms that best capture network traffic’s intrinsic characteristics in those applications for each of these applications. Also, the objective of traffic analysis is different for each of these applications. Specifically, in Bitcoin, our goal is to evaluate Bitcoin traffic’s resilience to blocking by powerful entities such as governments and ISPs. Bitcoin and similar cryptocurrencies play an important role in electronic commerce and other trust-based distributed systems because of their significant advantage over traditional currencies, including open access to global e-commerce. Therefore, it is essential to the consumers and the industry to have reliable access to their Bitcoin assets. We also examine stepping stone attacks for flow correlation. A stepping stone is a host that an attacker uses to relay her traffic to hide her identity. We introduce two fingerprinting systems, TagIt and FINN. TagIt embeds a secret fingerprint into the flows by moving the packets to specific time intervals. However, FINN utilizes DNNs to embed the fingerprint by changing the inter-packet delays (IPDs) in the flow. In messaging applications, we analyze the WhatsApp messaging service to determine if traffic leaks any sensitive information such as members’ identity in a particular conversation to the adversaries who watch their encrypted traffic. These messaging applications’ privacy is essential because these services provide an environment to dis- cuss politically sensitive subjects, making them a target to government surveillance and censorship in totalitarian countries. We take two technical approaches to design our traffic analysis techniques. The increasing use of DNN-based classifiers inspires our first direction: we train DNN classifiers to perform some specific traffic analysis task. Our second approach is to inspect and model the shape of traffic in the target application and design a statistical classifier for the expected shape of traffic. DNN- based methods are useful when the network is complex, and the traffic’s underlying noise is not linear. Also, these models do not need a meticulous analysis to extract the features. However, deep learning techniques need a vast amount of training data to work well. Therefore, they are not beneficial when there is insufficient data avail- able to train a generalized model. On the other hand, statistical methods have the advantage that they do not have training overhead

    Sensing and making sense of crowd dynamics using Bluetooth tracking : an application-oriented approach

    Get PDF

    Feasibility Analysis of Various Electronic Voting Systems for Complex Elections

    Get PDF
    • …
    corecore