254 research outputs found

    Fault Diagnosis and Fault Tolerant Control of Wind Turbines: An Overview

    Get PDF
    Wind turbines are playing an increasingly important role in renewable power generation. Their complex and large-scale structure, however, and operation in remote locations with harsh environmental conditions and highly variable stochastic loads make fault occurrence inevitable. Early detection and location of faults are vital for maintaining a high degree of availability and reducing maintenance costs. Hence, the deployment of algorithms capable of continuously monitoring and diagnosing potential faults and mitigating their effects before they evolve into failures is crucial. Fault diagnosis and fault tolerant control designs have been the subject of intensive research in the past decades. Significant progress has been made and several methods and control algorithms have been proposed in the literature. This paper provides an overview of the most recent fault diagnosis and fault tolerant control techniques for wind turbines. Following a brief discussion of the typical faults, the most commonly used model-based, data-driven and signal-based approaches are discussed. Passive and active fault tolerant control approaches are also highlighted and relevant publications are discussed. Future development tendencies in fault diagnosis and fault tolerant control of wind turbines are also briefly stated. The paper is written in a tutorial manner to provide a comprehensive overview of this research topic

    Asymptotic Tracking Control of Uncertain MIMO Nonlinear Systems with Less Conservative Controllability Conditions

    Full text link
    For uncertain multiple inputs multi-outputs (MIMO) nonlinear systems, it is nontrivial to achieve asymptotic tracking, and most existing methods normally demand certain controllability conditions that are rather restrictive or even impractical if unexpected actuator faults are involved. In this note, we present a method capable of achieving zero-error steady-state tracking with less conservative (more practical) controllability condition. By incorporating a novel Nussbaum gain technique and some positive integrable function into the control design, we develop a robust adaptive asymptotic tracking control scheme for the system with time-varying control gain being unknown its magnitude and direction. By resorting to the existence of some feasible auxiliary matrix, the current state-of-art controllability condition is further relaxed, which enlarges the class of systems that can be considered in the proposed control scheme. All the closed-loop signals are ensured to be globally ultimately uniformly bounded. Moreover, such control methodology is further extended to the case involving intermittent actuator faults, with application to robotic systems. Finally, simulation studies are carried out to demonstrate the effectiveness and flexibility of this method

    Passive Fault Tolerant Control

    Get PDF

    Multiple model L1 adaptive fault-tolerant control of small unmanned aerial vehicles

    Get PDF
    This paper presents a method for fault-tolerant control of small fixed-wing Unmanned Aerial Vehicles (UAVs). The proposed design is based on multiple-model L1 adaptive control. The controller is composed of a nominal reference model and a set of suboptimal reference models. The nominal model is the one with desired dynamics that are optimal regarding some specific criteria. In a suboptimal model the performance criteria are reduced, it is designed to ensure system robustness in the presence of critical failures. The controller was tested in simulations and it was shown that the multiple model L1 adaptive controller stabilizes the system in case of inversion of the control input, while the L1 adaptive controller with a single nominal model fails
    • …
    corecore