2,207 research outputs found

    A Novel Combined System of Direction Estimation and Sound Zooming of Multiple Speakers

    Get PDF
    This article presents a new system for estimation the direction of multiple speakers and zooming the sound of one of them at a time. The proposed system is a combination of two levels; namely, sound source direction estimation, and acoustic zooming. The sound source direction estimation uses so-called the energetic analysis method for estimation the direction of multiple speakers, whereas the acoustic zooming is based on modifying the parameters of the directional audio coding (DirAC) in order to zoom the sound of a selected speaker among the others. Both listening tests and objective assessments are performed to evaluate this system using different time-frequency transforms

    TDOA--based localization in two dimensions: the bifurcation curve

    Full text link
    In this paper, we complete the study of the geometry of the TDOA map that encodes the noiseless model for the localization of a source from the range differences between three receivers in a plane, by computing the Cartesian equation of the bifurcation curve in terms of the positions of the receivers. From that equation, we can compute its real asymptotic lines. The present manuscript completes the analysis of [Inverse Problems, Vol. 30, Number 3, Pages 035004]. Our result is useful to check if a source belongs or is closed to the bifurcation curve, where the localization in a noisy scenario is ambiguous.Comment: 11 pages, 3 figures, to appear in Fundamenta Informatica

    Localization, Mapping and SLAM in Marine and Underwater Environments

    Get PDF
    The use of robots in marine and underwater applications is growing rapidly. These applications share the common requirement of modeling the environment and estimating the robots’ pose. Although there are several mapping, SLAM, target detection and localization methods, marine and underwater environments have several challenging characteristics, such as poor visibility, water currents, communication issues, sonar inaccuracies or unstructured environments, that have to be considered. The purpose of this Special Issue is to present the current research trends in the topics of underwater localization, mapping, SLAM, and target detection and localization. To this end, we have collected seven articles from leading researchers in the field, and present the different approaches and methods currently being investigated to improve the performance of underwater robots

    Acoustic Sensor Networks and Mobile Robotics for Sound Source Localization

    Full text link
    © 2019 IEEE. Localizing a sound source is a fundamental but still challenging issue in many applications, where sound information is gathered by static and local microphone sensors. Therefore, this work proposes a new system by exploiting advances in sensor networks and robotics to more accurately address the problem of sound source localization. By the use of the network infrastructure, acoustic sensors are more efficient to spatially monitor acoustical phenomena. Furthermore, a mobile robot is proposed to carry an extra microphone array in order to collect more acoustic signals when it travels around the environment. Driving the robot is guided by the need to increase the quality of the data gathered by the static acoustic sensors, which leads to better probabilistic fusion of all the information gained, so that an increasingly accurate map of the sound source can be built. The proposed system has been validated in a real-life environment, where the obtained results are highly promising

    Audio Fingerprinting for Multi-Device Self-Localization

    Get PDF
    This work was supported by the U.K. Engineering and Physical Sciences Research Council (EPSRC) under Grant EP/K007491/1

    Perception of echo-acoustic flow in bats

    Get PDF

    Microphones’ Directivity for the Localization of Sound Sources

    Get PDF
    In a recent paper [P. Rizzo, G. Bordoni, A. Marzani, and J. Vipperman, “Localization of Sound Sources by Means of Unidirectional Microphones, Meas. Sci. Tech., 20, 055202 (12pp), 2009] the proof-of-concept of an approach for the localization of acoustic sources was presented. The method relies on the use of unidirectional microphones and amplitude-based signals’ features to extract information about the direction of the incoming sound. By intersecting the directions identified by a pair of microphones, the position of the emitting source can be identified. In this paper we expand the work presented previously by assessing the effectiveness of the approach for the localization of an acoustic source in an indoor setting. As the method relies on the accurate knowledge of the microphones directivity, analytical expression of the acoustic sensors polar pattern were derived by testing them in an anechoic chamber. Then an experiment was conducted in an empty laboratory by using an array of three unidirectional microphones. The ability to locate the position of a commercial speaker placed at different positions in the room is discussed. The objective of this study is to propose a valid alternative to the common application of spaced arrays and therefore to introduce a new generation of reduced size sound detectors and localizers. The ability of the proposed methodology to locate the position of a commercial speaker placed at different positions in the room was evaluated and compared to the accuracy provided by a conventional time delay estimate algorithm
    • …
    corecore