197 research outputs found

    Design, control and evaluation of a low-cost active orthosis for the gait of spinal cord injured subjects

    Get PDF
    Robotic gait training after spinal cord injury is of high priority to maximize independence and improve the living conditions of the patients. Current rehabilitation robots are expensive and heavy, and are generally found only in the clinical environment. To overcome these issues, we present the design of a low-cost, low-weight and personalized robotic orthosis for incomplete spinal cord injured subjects. The paper also presents a preliminary experimental evaluation of the assistive device on one subject with spinal cord injury that can control hip flexion to a certain extent, but lacks control of knee and ankle muscles. Results show that gait velocity, stride length and cadence of walking increased (24,11%, 7,41% and 15,56%, respectively) when wearing active orthoses compared to the case when the subject used the usual passive orthoses.Postprint (published version

    Design, control, and pilot study of a lightweight and modular robotic exoskeleton for walking assistance after spinal cord injury

    Get PDF
    Walking rehabilitation using exoskeletons is of high importance to maximize independence and improve the general well-being of spinal cord injured subjects. We present the design and control of a lightweight and modular robotic exoskeleton to assist walking in spinal cord injured subjects who can control hip flexion, but lack control of knee and ankle muscles. The developed prototype consists of two robotic orthoses, which are powered by a motor-harmonic drive actuation system that controls knee flexion–extension. This actuation module is assembled on standard passive orthoses. Regarding the control, the stance-to-swing transition is detected using two inertial measurement units mounted on the tibial supports, and then the corresponding motor performs a predefined flexion–extension cycle that is personalized to the specific patient’s motor function. The system is portable by means of a backpack that contains an embedded computer board, the motor drivers, and the battery. A preliminary biomechanical evaluation of the gait-assistive device used by a female patient with incomplete spinal cord injury at T11 is presented. Results show an increase of gait speed (+24.11%), stride length (+7.41%), and cadence (+15.56%) when wearing the robotic orthoses compared with the case with passive orthoses. Conversely, a decrease of lateral displacement of the center of mass (-19.31%) and step width (-13.37% right step, -8.81% left step) are also observed, indicating gain of balance. The biomechanical assessment also reports an overall increase of gait symmetry when wearing the developed assistive device.Peer ReviewedPostprint (published version

    Comparing walking with knee-ankle-foot orthoses and a knee-powered exoskeleton after spinal cord injury: a randomized, crossover clinical trial

    Get PDF
    Recovering the ability to stand and walk independently can have numerous health benefits for people with spinal cord injury (SCI). Wearable exoskeletons are being considered as a promising alternative to conventional knee-ankle-foot orthoses (KAFOs) for gait training and assisting functional mobility. However, comparisons between these two types of devices in terms of gait biomechanics and energetics have been limited. Through a randomized, crossover clinical trial, this study compared the use of a knee-powered lower limb exoskeleton (the ABLE Exoskeleton) against passive orthoses, which are the current standard of care for verticalization and gait ambulation outside the clinical setting in people with SCI. Ten patients with SCI completed a 10-session gait training program with each device followed by user satisfaction questionnaires. Walking with the ABLE Exoskeleton improved gait kinematics compared to the KAFOs, providing a more physiological gait pattern with less compensatory movements (38% reduction of circumduction, 25% increase of step length, 29% improvement in weight shifting). However, participants did not exhibit significantly better results in walking performance for the standard clinical tests (Timed Up and Go, 10-m Walk Test, and 6-min Walk Test), nor significant reductions in energy consumption. These results suggest that providing powered assistance only on the knee joints is not enough to significantly reduce the energy consumption required by people with SCI to walk compared to passive orthoses. Active assistance on the hip or ankle joints seems necessary to achieve this outcome.Peer ReviewedPostprint (published version

    ABLE: assistive biorobotic low-cost exoskeleton

    Get PDF
    Robotic gait training after spinal cord injury is of high priority to maximize independence and improve the health condition of these patients. Current rehabilitation robots are expensive and heavy, and are generally found only in the clinic. To overcome these issues, we present the design of a low-cost, low-weight, personalized and easy-to-use robotic exoskeleton for incomplete spinal cord injured subjects based on simple modular components that are assembled on the current passive orthopedic supports. The paper also presents a preliminary experimental assessment of the assistive device on one subject with spinal cord injury that can control hip flexion, but lacks control of knee and ankle muscles. Results show that gait velocity, stride length and cadence of walking increased (24,11%, 7,41% and 15,56%, respectively) when wearing the robotic exoskeleton compared to the case when the subject used the usual passive supports.Postprint (author's final draft

    Simulation and design of an active orthosis for an incomplete spinal cord injured subject

    Get PDF
    The dynamic simulation of incomplete spinal cord injured individuals equipped with active orthoses is a challenging problem due to the redundancy of the simultaneous human-orthosis actuation. The objective of this work is two-fold. Firstly, a physiological static optimization approach to solve the muscle-orthosis actuation sharing problem is presented. For this purpose, a biomechanical model based on multibody dynamics techniques is used. The muscles are modeled as Hill-type actuators and the atrophy of denervated muscles is considered by adding stiff and dissipative elements. Secondly, the mechanical design of a new active stance-control knee-ankle-foot orthosis (A-SCKAFO) is addressed. The proposed device consists of a passive joint that constrains ankle plantar flexion, along with a powered knee unit that prevents flexion during stance and controls flexion-extension during swing. The knee actuation is selected based on the results obtained through the optimization approach.Peer ReviewedPostprint (published version

    Robotic design and modelling of medical lower extremity exoskeletons

    Get PDF
    This study aims to explain the development of the robotic Lower Extremity Exoskeleton (LEE) systems between 1960 and 2019 in chronological order. The scans performed in the exoskeleton system’s design have shown that a modeling program, such as AnyBody, and OpenSim, should be used first to observe the design and software animation, followed by the mechanical development of the system using sensors and motors. Also, the use of OpenSim and AnyBody musculoskeletal system software has been proven to play an essential role in designing the human-exoskeleton by eliminating the high costs and risks of the mechanical designs. Furthermore, these modeling systems can enable rapid optimization of the LEE design by detecting the forces and torques falling on the human muscles

    A novel approach to user controlled ambulation of lower extremity exoskeletons using admittance control paradigm

    Get PDF
    The robotic lower extremity exoskeletons address the ambulatory problems confronting individuals with paraplegia. Paraplegia due to spinal cord injury (SCI) can cause motor deficit to the lower extremities leading to inability to walk. Though wheelchairs provide mobility to the user, they do not provide support to all activities of everyday living to individuals with paraplegia. Current research is addressing the issue of ambulation through the use of wearable exoskeletons that are pre-programmed. There are currently four exoskeletons in the U.S. market: Ekso, Rewalk, REX and Indego. All of the currently available exoskeletons have 2 active Degrees of Freedom (DOF) except for REX which has 5 active DOF. All of them have pre-programmed gait giving the user the ability to initiate a gait but not the ability to control the stride amplitude (height), stride frequency or stride length, and hence restricting users’ ability to navigate across different surfaces and obstacles that are commonly encountered in the community. Most current exoskeletons do not have motors for abduction or adduction to provide users with the option for movement in coronal plane, hence restricting user’s ability to effectively use the exoskeletons. These limitations of currently available pre-programmed exoskeleton models are sought to be overcome by an intuitive, real time user-controlled control mechanism employing admittance control by using hand-trajectory as a surrogate for foot trajectory. Preliminary study included subjects controlling the trajectory of the foot in a virtual environment using their contralateral hand. The study proved that hands could produce trajectories similar to human foot trajectories when provided with haptic and visual feedback. A 10 DOF 1/2 scale biped robot was built to test the control paradigm. The robot has 5 DOF on each leg with 2 DOF at the hip to provide flexion/extension and abduction/adduction, 1 DOF at the knee to provide flexion and 2 DOF at the ankle to provide flexion/extension and inversion/eversion. The control mechanism translates the trajectory of each hand into the trajectory of the ipsilateral foot in real time, thus providing the user with the ability to control each leg in both sagittal and coronal planes using the admittance control paradigm. The efficiency of the control mechanism was evaluated in a study using healthy subjects controlling the robot on a treadmill. A trekking pole was attached to each foot of the biped. The subjects controlled the trajectory of the foot of the biped by applying small forces in the direction of the required movement to the trekking pole through a force sensor. The algorithm converted the forces to Cartesian position of the foot in real time using admittance control; the Cartesian position was converted to joint angles of the hip and knee using inverse kinematics. The kinematics, synchrony and smoothness of the trajectory produced by the biped robot was evaluated at different speeds, with and without obstacles, and compared with typical walking by human subjects on the treadmill. Further, the cognitive load required to control the biped on the treadmill was evaluated and the effect of speed and obstacles with cognitive load on the kinematics, synchrony and smoothness was analyzed
    • …
    corecore