4,175 research outputs found

    Spatial Compressive Sensing for MIMO Radar

    Full text link
    We study compressive sensing in the spatial domain to achieve target localization, specifically direction of arrival (DOA), using multiple-input multiple-output (MIMO) radar. A sparse localization framework is proposed for a MIMO array in which transmit and receive elements are placed at random. This allows for a dramatic reduction in the number of elements needed, while still attaining performance comparable to that of a filled (Nyquist) array. By leveraging properties of structured random matrices, we develop a bound on the coherence of the resulting measurement matrix, and obtain conditions under which the measurement matrix satisfies the so-called isotropy property. The coherence and isotropy concepts are used to establish uniform and non-uniform recovery guarantees within the proposed spatial compressive sensing framework. In particular, we show that non-uniform recovery is guaranteed if the product of the number of transmit and receive elements, MN (which is also the number of degrees of freedom), scales with K(log(G))^2, where K is the number of targets and G is proportional to the array aperture and determines the angle resolution. In contrast with a filled virtual MIMO array where the product MN scales linearly with G, the logarithmic dependence on G in the proposed framework supports the high-resolution provided by the virtual array aperture while using a small number of MIMO radar elements. In the numerical results we show that, in the proposed framework, compressive sensing recovery algorithms are capable of better performance than classical methods, such as beamforming and MUSIC.Comment: To appear in IEEE Transactions on Signal Processin

    Grid-free compressive beamforming

    Get PDF
    The direction-of-arrival (DOA) estimation problem involves the localization of a few sources from a limited number of observations on an array of sensors, thus it can be formulated as a sparse signal reconstruction problem and solved efficiently with compressive sensing (CS) to achieve high-resolution imaging. On a discrete angular grid, the CS reconstruction degrades due to basis mismatch when the DOAs do not coincide with the angular directions on the grid. To overcome this limitation, a continuous formulation of the DOA problem is employed and an optimization procedure is introduced, which promotes sparsity on a continuous optimization variable. The DOA estimation problem with infinitely many unknowns, i.e., source locations and amplitudes, is solved over a few optimization variables with semidefinite programming. The grid-free CS reconstruction provides high-resolution imaging even with non-uniform arrays, single-snapshot data and under noisy conditions as demonstrated on experimental towed array data.Comment: 14 pages, 8 figures, journal pape

    Passive Source Localization Using Compressively Sensed Towed Array

    Get PDF
    The objective of this work is to estimate the sparse angular power spectrum using a towed acoustic pressure sensor (APS) array. In a passive towed array sonar, any reduction in the analog sensor signal conditioning receiver hardware housed inside the array tube, significantly improves the signal integrity and hence the localization performance. In this paper, a novel sparse acoustic pressure sensor (SAPS) array architecture is proposed to estimate the direction of arrival (DOA) of multiple acoustic sources. Bearing localization is effectively achieved by customizing the Capons spatial filter algorithm to suit the SAPS array architecture. Apart from the Monte Carlo simulations, the acoustic performance of the SAPS array with compressively sensed minimum variance distortionless response (CS-MVDR) filter is demonstrated using a real passive towed array data. The proposed sparse towed array architecture promises a significant reduction in the analog signal acquisition receiver hardware, transmission data rate, number of snapshots and software complexity.Defence Science Journal, 2013, 63(6), pp.630-635, DOI:http://dx.doi.org/10.14429/dsj.63.576

    Structural health monitoring of wind turbine blades: acoustic source localization using wireless sensor networks

    Get PDF
    Structural health monitoring (SHM) is important for reducing the maintenance and operation cost of safety-critical components and systems in offshore wind turbines. This paper proposes an in situ wireless SHM system based on an acoustic emission (AE) technique. By using this technique a number of challenges are introduced due to high sampling rate requirements, limitations in the communication bandwidth, memory space, and power resources. To overcome these challenges, this paper focused on two elements: (1) the use of an in situ wireless SHM technique in conjunction with the utilization of low sampling rates; (2) localization of acoustic sources which could emulate impact damage or audible cracks caused by different objects, such as tools, bird strikes, or strong hail, all of which represent abrupt AE events and could affect the structural health of a monitored wind turbine blade. The localization process is performed using features extracted from aliased AE signals based on a developed constraint localization model. To validate the performance of these elements, the proposed system was tested by testing the localization of the emulated AE sources acquired in the field

    Applications of Compressive Sampling Technique to Radar and Localization

    Get PDF
    During the last decade, the emerging technique of compressive sampling (CS) has become a popular subject in signal processing and sensor systems. In particular, CS breaks through the limits imposed by the Nyquist sampling theory and is able to substantially reduce the huge amount of data generated by different sources. The technique of CS has been successfully applied in signal acquisition, image compression, and data reduction. Although the theory of CS has been investigated for some radar and localization problems, several important questions have not been answered yet. For example, the performance of CS radar in a cluttered environment has not been comprehensively studied. Applying CS to passive radars and electronic warfare receivers is another concern that needs more attention. Also, it is well known that applying this strategy leads to extra computational costs which might be prohibitive in large-sized localization networks. In this chapter, we first discuss the practical issues in the process of implementing CS radars and localization systems. Then, we present some promising and efficient solutions to overcome the arising problems
    • …
    corecore