36 research outputs found

    Power-Efficient Design Techniques and Architectures for Scalable Submicron Analog Circuits

    Get PDF
    As the CMOS process scales down to submicron, digital circuit performance improves, while reduced supply voltage and lower transistor intrinsic gain make it difficult to implement analog circuits in a power efficient manner. Therefore, it has become advantageous to shift more analog signal processing functions conventionally realized in voltage (analog) domain into utilizing charge or time as the variable that can be processed by mostly digital/passive circuits. In this thesis, both circuit-level techniques and architectures are proposed that are inherently compatible with transistor scaling in submicron CMOS, meanwhile achieving state-of-the-art performance and optimizing power efficiency. The first part focuses on a highly reconfigurable charge-domain switched-g[subscript m]-C biquad band-pass filter (BPF) topology that utilizes an interleaved semi-passive charge sharing technique. It uses only switches, capacitors, linearity-enhanced gm-stages and digital circuitry for a 3-phase non-overlapping clock scheme. Flexible tunability in both center frequency and -3dB bandwidth is achieved with a scaling-compatible implementation. A 4th-order BPF prototype operating at a 1.2GS/s sampling rate is designed with a cascade of two proposed biquads in a 65nm LPE CMOS process. A tunable center frequency of 35−70MHz is measured with programmable bandwidth and a maximum stop-band rejection of 72dB. The measured in-band IIP3 is +12.5dBm. The filter prototype consumes 7.5mW total power from a 1.2V supply voltage, and occupies a core area of 0.17mm². In the second part, a highly linear continuous-time low-pass filter (LPF) topology with source follower coupling is presented that achieves excellent power efficiency. It synthesizes a 3rd-order low-pass transfer function in a single stage using coupled source followers and three capacitors, and can be configured to 2nd-order by disconnecting a capacitor. A 5th-order Butterworth prototype is designed with a cascade of two proposed filter stages in a 0.18μm CMOS, and occupies a core area of 0.12mm². Operating with a 1.3V supply voltage, the filter consumes only 0.5mA current, and achieves a -3dB bandwidth of 20MHz with 82dB stop-band rejection. A total harmonic distortion (THD) of -39.5dB at the output is measured with a +6.6dBm (i.e. 1.35V[subscript pk-pk]) input signal at 2MHz. The measured in-band IIP3 is +28.8dBm. The dynamic range (at 1% THD) is 76.8dB, with 15.3nV/√Hz averaged in-band input-referred noise. A pseudo-differential-VCO based 2nd-order continuous-time ΔΣ ADC with a residue self-coupling technique is proposed and implemented with mostly digital circuits in the third part. Two VCOs are arranged in a pseudo-differential manner. The digital output is obtained by comparing the sampled output phase of one VCO with that of the other. Passive subtraction is realized in current domain to obtain the residue at the VCO input. The residue self-coupling is implemented using a linear 1st-order transconductance low-pass filter (TCLPF). Moreover, a highly linear VCO topology is presented. The transistor-level simulations in a 65nm CMOS process show a 78dB SNDR over a 10MHz signal bandwidth with a power consumption of 2.9mW, which is 16dB improvement in contrast to the case with the TCLPF block powered off

    Solid-state imaging : a critique of the CMOS sensor

    Get PDF

    Low-power adaptive control scheme using switching activity measurement method for reconfigurable analog-to-digital converters

    Get PDF
    Power consumption is a critical issue for portable devices. The ever-increasing demand for multimode wireless applications and the growing concerns towards power-aware green technology make dynamically reconfigurable hardware an attractive solution for overcoming the power issue. This is due to its advantages of flexibility, reusability, and adaptability. During the last decade, reconfigurable analog-to-digital converters (ReADCs) have been used to support multimode wireless applications. With the ability to adaptively scale the power consumption according to different operation modes, reconfigurable devices utilise the power supply efficiently. This can prolong battery life and reduce unnecessary heat emission to the environment. However, current adaptive mechanisms for ReADCs rely upon external control signals generated using digital signal processors (DSPs) in the baseband. This thesis aims to provide a single-chip solution for real-time and low-power ReADC implementations that can adaptively change the converter resolution according to signal variations without the need of the baseband processing. Specifically, the thesis focuses on the analysis, design and implementation of a low-power digital controller unit for ReADCs. In this study, the following two important reconfigurability issues are investigated: i) the detection mechanism for an adaptive implementation, and ii) the measure of power and area overheads that are introduced by the adaptive control modules. This thesis outlines four main achievements to address these issues. The first achievement is the development of the switching activity measurement (SWAM) method to detect different signal components based upon the observation of the output of an ADC. The second achievement is a proposed adaptive algorithm for ReADCs to dynamically adjust the resolution depending upon the variations in the input signal. The third achievement is an ASIC implementation of the adaptive control module for ReADCs. The module achieves low reconfiguration overheads in terms of area and power compared with the main analog part of a ReADC. The fourth achievement is the development of a low-power noise detection module using a conventional ADC for signal improvement. Taken together, the findings from this study demonstrate the potential use of switching activity information of an ADC to adaptively control the circuits, and simultaneously expanding the functionality of the ADC in electronic systems

    On-Chip Analog Circuit Design Using Built-In Self-Test and an Integrated Multi-Dimensional Optimization Platform

    Get PDF
    Nowadays, the rapid development of system-on-chip (SoC) market introduces tremendous complexity into the integrated circuit (IC) design. Meanwhile, the IC fabrication process is scaling down to allow higher density of integration but makes the chips more sensitive to the process-voltage-temperature (PVT) variations. A successful IC product not only imposes great pressure on the IC designers, who have to handle wider variations and enforce more design margins, but also challenges the test procedure, leading to more check points and longer test time. To relax the designers’ burden and reduce the cost of testing, it is valuable to make the IC chips able to test and tune itself to some extent. In this dissertation, a fully integrated in-situ design validation and optimization (VO) hardware for analog circuits is proposed. It implements in-situ built-in self-test (BIST) techniques for analog circuits. Based on the data collected from BIST, the error between the measured and the desired performance of the target circuit is evaluated using a cost function. A digital multi-dimensional optimization engine is implemented to adaptively adjust the analog circuit parameters, seeking the minimum value of the cost function and achieving the desired performance. To verify this concept, study cases of a 2nd/4th active-RC band-pass filter (BPF) and a 2nd order Gm-C BPF, as well as all BIST and optimization blocks, are adopted on-chip. Apart from the VO system, several improved BIST techniques are also proposed in this dissertation. A single-tone sinusoidal waveform generator based on a finite-impulse-response (FIR) architecture, which utilizes an optimization algorithm to enhance its spur free dynamic range (SFDR), is proposed. It achieves an SFDR of 59 to 70 dBc from 150 to 850 MHz after the optimization procedure. A low-distortion current-steering two-tone sinusoidal signal synthesizer based on a mixing-FIR architecture is also proposed. The two-tone synthesizer extends the FIR architecture to two stages and implements an up-conversion mixer to generate the two tones, achieving better than -68 dBc IM3 below 480 MHz LO frequency without calibration. Moreover, an on-chip RF receiver linearity BIST methodology for continuous and discrete-time hybrid baseband chain is proposed. The proposed receiver chain implements a charge-domain FIR filter to notch the two excitation signals but expose the third order intermodulation (IM3) tones. It simplifies the linearity measurement procedure–using a power detector is enough to analyze the receiver’s linearity. Finally, a low cost fully digital built-in analog tester for linear-time-invariant (LTI) analog blocks is proposed. It adopts a time-to-digital converter (TDC) to measure the delays corresponded to a ramp excitation signal and is able to estimate the pole or zero locations of a low-pass LTI system
    corecore