154 research outputs found

    Image and Video Forensics

    Get PDF
    Nowadays, images and videos have become the main modalities of information being exchanged in everyday life, and their pervasiveness has led the image forensics community to question their reliability, integrity, confidentiality, and security. Multimedia contents are generated in many different ways through the use of consumer electronics and high-quality digital imaging devices, such as smartphones, digital cameras, tablets, and wearable and IoT devices. The ever-increasing convenience of image acquisition has facilitated instant distribution and sharing of digital images on digital social platforms, determining a great amount of exchange data. Moreover, the pervasiveness of powerful image editing tools has allowed the manipulation of digital images for malicious or criminal ends, up to the creation of synthesized images and videos with the use of deep learning techniques. In response to these threats, the multimedia forensics community has produced major research efforts regarding the identification of the source and the detection of manipulation. In all cases (e.g., forensic investigations, fake news debunking, information warfare, and cyberattacks) where images and videos serve as critical evidence, forensic technologies that help to determine the origin, authenticity, and integrity of multimedia content can become essential tools. This book aims to collect a diverse and complementary set of articles that demonstrate new developments and applications in image and video forensics to tackle new and serious challenges to ensure media authenticity

    Assessment of the CORONA series of satellite imagery for landscape archaeology: a case study from the Orontes valley, Syria

    Get PDF
    In 1995, a large database of satellite imagery with worldwide coverage taken from 1960 until 1972 was declassified. The main advantages of this imagery known as CORONA that made it attractive for archaeology were its moderate cost and its historical value. The main disadvantages were its unknown quality, format, geometry and the limited base of known applications. This thesis has sought to explore the properties and potential of CORONA imagery and thus enhance its value for applications in landscape archaeology. In order to ground these investigations in a real dataset, the properties and characteristics of CORONA imagery were explored through the case study of a landscape archaeology project working in the Orontes Valley, Syria. Present-day high-resolution IKONOS imagery was integrated within the study and assessed alongside CORONA imagery. The combination of these two image datasets was shown to provide a powerful set of tools for investigating past archaeological landscape in the Middle East. The imagery was assessed qualitatively through photointerpretation for its ability to detect archaeological remains, and quantitatively through the extraction of height information after the creation of stereomodels. The imagery was also assessed spectrally through fieldwork and spectroradiometric analysis, and for its Multiple View Angle (MVA) capability through visual and statistical analysis. Landscape archaeology requires a variety of data to be gathered from a large area, in an effective and inexpensive way. This study demonstrates an effective methodology for the deployment of CORONA and IKONOS imagery and raises a number of technical points of which the archaeological researcher community need to be aware of. Simultaneously, it identified certain limitations of the data and suggested solutions for the more effective exploitation of the strengths of CORONA imagery
    corecore