95,076 research outputs found

    A novel hybrid 3D endoscope zooming and repositioning system : design and feasibility study

    Get PDF
    Background: Manipulation of the endoscope during minimally invasive surgery is a major source of inconvenience and discomfort. This report elucidates the architecture of a novel one-hand controlled endoscope positioning device and presents a practicability evaluation. Methods and materials: Setup time and total surgery time, number and duration of the manipulations, side effects of three-dimensional (3D) imaging, and ergonomic complaints were assessed by three surgeons during cadaveric and in vivo porcine trials. Results: Setup was accomplished in an average (SD) of 230 (120) seconds. The manipulation time was 3.87 (1.77) seconds for angular movements and 0.83 (0.24) seconds for zooming, with an average (SD) of 30.5 (16.3) manipulations per procedure. No side effects of 3D imaging or ergonomic complaints were reported. Conclusions: The integration of an active zoom into a passive endoscope holder delivers a convenient synergy between a human and a machine-controlled holding device. It is shown to be safe, simple, and intuitive to use and allows unrestrained autonomic control of the endoscope by the surgeon

    Medical 3D thermography system

    Get PDF
    Infrared (IR) thermography determines the surface temperature of an object or human body using thermal IR measurement camera. It is an imaging technology which is contactless and completely non-invasive. These propertiesmake IR thermography a useful method of analysis that is used in various industrial applications to detect, monitor and predict irregularities in many fields from engineering to medical and biological observations. This paper presents a conceptual model of Medical 3D Thermography which introduces standardised 3D thermogram creation, representation and analysis concepts useful for variety of medical applications. The creation of 3D thermograms is possible through combining 3D scanning methods with thermal imaging.We describe development of a 3D thermography system integrating passive thermal imaging with 3D geometrical data from active 3D scanner.We outline the potential benefits of this system in medical applications. In particular, we emphasize the benefits of using this system for preventive detection of breast cancer

    Improving elevation resolution in phased-array inspections for NDT

    Get PDF
    The Phased Array Ultrasonic Technique (PAUT) offers great advantages over the conventional ultrasound technique (UT), particularly because of beam focusing, beam steering and electronic scanning capabilities. However, the 2D images obtained have usually low resolution in the direction perpendicular to the array elements, which limits the inspection quality of large components by mechanical scanning. This paper describes a novel approach to improve image quality in these situations, by combining three ultrasonic techniques: Phased Array with dynamic depth focusing in reception, Synthetic Aperture Focusing Technique (SAFT) and Phase Coherence Imaging (PCI). To be applied with conventional NDT arrays (1D and non-focused in elevation) a special mask to produce a wide beam in the movement direction was designed and analysed by simulation and experimentally. Then, the imaging algorithm is presented and validated by the inspection of test samples. The obtained images quality is comparable to that obtained with an equivalent matrix array, but using conventional NDT arrays and equipments, and implemented in real time.Fil: Brizuela, Jose David. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Camacho, J.. Consejo Superior de Investigaciones Científicas; EspañaFil: Cosarinsky, Guillermo Gerardo. Comisión Nacional de Energía Atómica; ArgentinaFil: Iriarte, Juan Manuel. Comisión Nacional de Energía Atómica; ArgentinaFil: Cruza, Jorge F.. Consejo Superior de Investigaciones Científicas; Españ

    Optical techniques for 3D surface reconstruction in computer-assisted laparoscopic surgery

    Get PDF
    One of the main challenges for computer-assisted surgery (CAS) is to determine the intra-opera- tive morphology and motion of soft-tissues. This information is prerequisite to the registration of multi-modal patient-specific data for enhancing the surgeon’s navigation capabilites by observ- ing beyond exposed tissue surfaces and for providing intelligent control of robotic-assisted in- struments. In minimally invasive surgery (MIS), optical techniques are an increasingly attractive approach for in vivo 3D reconstruction of the soft-tissue surface geometry. This paper reviews the state-of-the-art methods for optical intra-operative 3D reconstruction in laparoscopic surgery and discusses the technical challenges and future perspectives towards clinical translation. With the recent paradigm shift of surgical practice towards MIS and new developments in 3D opti- cal imaging, this is a timely discussion about technologies that could facilitate complex CAS procedures in dynamic and deformable anatomical regions

    Merged simulation procedure for W-band imaging systems

    Get PDF
    This article presents and discusses a unifying simulation procedure aimed at providing more realistic performance prediction of basic imaging systems, combining 3D EM (3 Dimensions Electro-Magnetic) simulations and nonlinear receiver circuit simulation. New methods are proposed to emulate the radiated emissivity profile of a target body and to use harmonic balance simulation to emulate nonlinear circuit/system response to a broadband noisy stimulus. The procedure focuses mainly on passive imaging, but active imaging including illuminated passive imaging is dealt with and some elemental experiments are presented and discussed for comparisons. The method enables the extrapolation of the frequency response of a single pixel detector to an array with more elements suitable for providing a complete set of pixels and can help in evaluating the most suitable bandwidth according to the operation mode (passive/active), frequency range of operation, desired resolution, and the pixel number-image resolution tradeoff.Spanish Ministry of Economy Science and Innovation, CONSOLIDER‐INGENIO CSD2008‐00068 (TERASENSE), Excellence network SPATEK, Project TEC2014‐58341‐C4‐1‐R., Project TEC2017‐83343‐C4‐1‐R,; University of Cantabria Industrial Doctorate programme 2014, Project: “Estudio y Desarrollo de Tecnologías para Sistemas de Telecomunicación a Frecuencias Milimétricas y de Terahercios con Aplicación a Sistemas de Imaging en la Banda 90 GHz‐100GHz
    corecore