14,371 research outputs found

    Precision Electron-Beam Polarimetry using Compton Scattering at 1 GeV

    Get PDF
    We report on the highest precision yet achieved in the measurement of the polarization of a low energy, O\mathcal{O}(1 GeV), electron beam, accomplished using a new polarimeter based on electron-photon scattering, in Hall~C at Jefferson Lab. A number of technical innovations were necessary, including a novel method for precise control of the laser polarization in a cavity and a novel diamond micro-strip detector which was able to capture most of the spectrum of scattered electrons. The data analysis technique exploited track finding, the high granularity of the detector and its large acceptance. The polarization of the 180 μ180~\muA, 1.161.16~GeV electron beam was measured with a statistical precision of <<~1\% per hour and a systematic uncertainty of 0.59\%. This exceeds the level of precision required by the \qweak experiment, a measurement of the vector weak charge of the proton. Proposed future low-energy experiments require polarization uncertainty <<~0.4\%, and this result represents an important demonstration of that possibility. This measurement is also the first use of diamond detectors for particle tracking in an experiment.Comment: 9 pages, 7 figures, published in PR

    Secondary wind dispersal enhances long-distance dispersal of an invasive species in urban road corridors

    Get PDF
    Roads contribute to habitat fragmentation and function as dispersal barriers for many organisms. At the same time many nonnative plant species are associated with road systems, a relationship that has been explained by the availability of disturbed habitats along roadsides and traffic-mediated dispersal of species. By studying secondary wind dispersal (SWD) over paved ground in an urban road corridor, we add the perspective of corridor-specific, but traffic-independent dispersal processes to the complex dispersal systems along roads. We analyzed (1) the seed shadow of an invasive tree Ailanthus altissima along a sidewalk subsequent to a strong wind and (2) the movements of painted samaras of this species released at ground level at the same site to identify the functioning of SWD. For the first experiment, we searched for samaras in the vicinity of an isolated tree three days after a strong wind. For the second experiment, we tracked the movement of the released samaras repeatedly over a period of 9–11 days, approximated probability-distance functions to the frequency distribution of samaras along the transect for different times after release, and related nearby measured wind data to changes in dispersal kernels. Single samaras from an isolated tree formed a seed shadow that extended for a distance of up to 456 m, and fragments of fruit clusters traveled up to 240 m. Forty-two percent of the sampled samaras were moved >100 m. The second experiment revealed that painted samaras released on the ground were moved up to 150 m over the pavement. Dispersal distances increased with time after seed release. A wider distribution of diaspores over the transect was significantly related to higher wind sums. Habitat shifts to safe sites for germination occurred during SWD, and different types of pavement influenced these processes. Smooth-surfaced pavement enhanced SWD, while cobbles with irregular surfaces slowed down or terminated SWD. During the observation period, 17% of released samaras accumulated in patches with a planted tree. Some were recaptured within the median strip and thus must have been lifted and moved over four lanes of heavy traffic. Our results suggest that impervious surfaces within road corridors can function as powerful avenues of wind-mediated long-distance dispersal and may counteract fragmentation of urban habitats. This also offers a functional explanation for the invasion success of Ailanthus at isolated urban sites

    Droplet activation, separation, and compositional analysis: laboratory studies and atmospheric measurements

    Get PDF
    Droplets produced in a cloud condensation nuclei chamber (CCNC) as a function of supersaturation have been separated from unactivated aerosol particles using counterflow virtual impaction. Residual material after droplets were evaporated was chemically analyzed with an Aerodyne Aerosol Mass Spectrometer (AMS) and the Particle Analysis by Laser Mass Spectrometry (PALMS) instrument. Experiments were initially conducted to verify activation conditions for monodisperse ammonium sulfate particles and to determine the resulting droplet size distribution as a function of supersaturation. Based on the observed droplet size, the counterflow virtual impactor cut-size was set to differentiate droplets from unactivated interstitial particles. Validation experiments were then performed to verify that only droplets with sufficient size passed through the counterflow virtual impactor for subsequent analysis. A two-component external mixture of monodisperse particles was also exposed to a supersaturation which would activate one of the types (hygroscopic salts) but not the other (polystyrene latex spheres or adipic acid). The mass spectrum observed after separation indicated only the former, validating separation of droplets from unactivated particles. Results from ambient measurements using this technique and AMS analysis were inconclusive, showing little chemical differentiation between ambient aerosol and activated droplet residuals, largely due to low signal levels. When employing as single particle mass spectrometer for compositional analysis, however, we observed enhancement of sulfate in droplet residuals
    corecore