5,019 research outputs found

    On the Feasibility of Automated Detection of Allusive Text Reuse

    Full text link
    The detection of allusive text reuse is particularly challenging due to the sparse evidence on which allusive references rely---commonly based on none or very few shared words. Arguably, lexical semantics can be resorted to since uncovering semantic relations between words has the potential to increase the support underlying the allusion and alleviate the lexical sparsity. A further obstacle is the lack of evaluation benchmark corpora, largely due to the highly interpretative character of the annotation process. In the present paper, we aim to elucidate the feasibility of automated allusion detection. We approach the matter from an Information Retrieval perspective in which referencing texts act as queries and referenced texts as relevant documents to be retrieved, and estimate the difficulty of benchmark corpus compilation by a novel inter-annotator agreement study on query segmentation. Furthermore, we investigate to what extent the integration of lexical semantic information derived from distributional models and ontologies can aid retrieving cases of allusive reuse. The results show that (i) despite low agreement scores, using manual queries considerably improves retrieval performance with respect to a windowing approach, and that (ii) retrieval performance can be moderately boosted with distributional semantics

    Exploring a Multidimensional Representation of Documents and Queries (extended version)

    Get PDF
    In Information Retrieval (IR), whether implicitly or explicitly, queries and documents are often represented as vectors. However, it may be more beneficial to consider documents and/or queries as multidimensional objects. Our belief is this would allow building "truly" interactive IR systems, i.e., where interaction is fully incorporated in the IR framework. The probabilistic formalism of quantum physics represents events and densities as multidimensional objects. This paper presents our first step towards building an interactive IR framework upon this formalism, by stating how the first interaction of the retrieval process, when the user types a query, can be formalised. Our framework depends on a number of parameters affecting the final document ranking. In this paper we experimentally investigate the effect of these parameters, showing that the proposed representation of documents and queries as multidimensional objects can compete with standard approaches, with the additional prospect to be applied to interactive retrieval

    ANSWERING TOPICAL INFORMATION NEEDS USING NEURAL ENTITY-ORIENTED INFORMATION RETRIEVAL AND EXTRACTION

    Get PDF
    In the modern world, search engines are an integral part of human lives. The field of Information Retrieval (IR) is concerned with finding material (usually documents) of an unstructured nature (usually text) that satisfies an information need (query) from within large collections (usually stored on computers). The search engine then displays a ranked list of results relevant to our query. Traditional document retrieval algorithms match a query to a document using the overlap of words in both. However, the last decade has seen the focus shifting to leveraging the rich semantic information available in the form of entities. Entities are uniquely identifiable objects or things such as places, events, diseases, etc. that exist in the real or fictional world. Entity-oriented search systems leverage the semantic information associated with entities (e.g., names, types, etc.) to better match documents to queries. Web search engines would provide better search results if they understand the meaning of a query. This dissertation advances the state-of-the-art in IR by developing novel algorithmsthat understand text (query, document, question, sentence, etc.) at the semantic level. To this end, this dissertation aims to understand the fine-grained meaning of entities from the context in which the entities have been mentioned, for example, “oysters” in the context of food versus ecosystems. Further, we aim to automatically learn (vector) representations of entities that incorporate this fine-grained knowledge and knowledge about the query. This work refines the automatic understanding of text passages using deep learning, a modern artificial intelligence paradigm. This dissertation utilized the semantic information extracted from entities to retrieve materials (text and entities) relevant to a query. The interplay between text and entities in the text is studied by addressing three related prediction problems: (1) Identify entities that are relevant for the query, (2) Understand an entity’s meaning in the context of the query, and (3) Identify text passages that elaborate the connection between the query and an entity. The research presented in this dissertation may be integrated into a larger system de-signed for answering complex topical queries such as dark chocolate health benefits which require the search engine to automatically understand the connections between the query and the relevant material, thus transforming the search engine into an answering engine

    The State-of-the-arts in Focused Search

    Get PDF
    The continuous influx of various text data on the Web requires search engines to improve their retrieval abilities for more specific information. The need for relevant results to a user’s topic of interest has gone beyond search for domain or type specific documents to more focused result (e.g. document fragments or answers to a query). The introduction of XML provides a format standard for data representation, storage, and exchange. It helps focused search to be carried out at different granularities of a structured document with XML markups. This report aims at reviewing the state-of-the-arts in focused search, particularly techniques for topic-specific document retrieval, passage retrieval, XML retrieval, and entity ranking. It is concluded with highlight of open problems

    Using Learning to Rank Approach to Promoting Diversity for Biomedical Information Retrieval with Wikipedia

    Get PDF
    In most of the traditional information retrieval (IR) models, the independent relevance assumption is taken, which assumes the relevance of a document is independent of other documents. However, the pitfall of this is the high redundancy and low diversity of retrieval result. This has been seen in many scenarios, especially in biomedical IR, where the information need of one query may refer to different aspects. Promoting diversity in IR takes the relationship between documents into account. Unlike previous studies, we tackle this problem in the learning to rank perspective. The main challenges are how to find salient features for biomedical data and how to integrate dynamic features into the ranking model. To address these challenges, Wikipedia is used to detect topics of documents for generating diversity biased features. A combined model is proposed and studied to learn a diversified ranking result. Experiment results show the proposed method outperforms baseline models
    corecore