14,830 research outputs found

    Visual-hint Boundary to Segment Algorithm for Image Segmentation

    Full text link
    Image segmentation has been a very active research topic in image analysis area. Currently, most of the image segmentation algorithms are designed based on the idea that images are partitioned into a set of regions preserving homogeneous intra-regions and inhomogeneous inter-regions. However, human visual intuition does not always follow this pattern. A new image segmentation method named Visual-Hint Boundary to Segment (VHBS) is introduced, which is more consistent with human perceptions. VHBS abides by two visual hint rules based on human perceptions: (i) the global scale boundaries tend to be the real boundaries of the objects; (ii) two adjacent regions with quite different colors or textures tend to result in the real boundaries between them. It has been demonstrated by experiments that, compared with traditional image segmentation method, VHBS has better performance and also preserves higher computational efficiency.Comment: 45 page

    Estimating good discrete partitions from observed data: symbolic false nearest neighbors

    Full text link
    A symbolic analysis of observed time series data requires making a discrete partition of a continuous state space containing observations of the dynamics. A particular kind of partition, called ``generating'', preserves all dynamical information of a deterministic map in the symbolic representation, but such partitions are not obvious beyond one dimension, and existing methods to find them require significant knowledge of the dynamical evolution operator or the spectrum of unstable periodic orbits. We introduce a statistic and algorithm to refine empirical partitions for symbolic state reconstruction. This method optimizes an essential property of a generating partition: avoiding topological degeneracies. It requires only the observed time series and is sensible even in the presence of noise when no truly generating partition is possible. Because of its resemblance to a geometrical statistic frequently used for reconstructing valid time-delay embeddings, we call the algorithm ``symbolic false nearest neighbors''

    Local multiresolution order in community detection

    Full text link
    Community detection algorithms attempt to find the best clusters of nodes in an arbitrary complex network. Multi-scale ("multiresolution") community detection extends the problem to identify the best network scale(s) for these clusters. The latter task is generally accomplished by analyzing community stability simultaneously for all clusters in the network. In the current work, we extend this general approach to define local multiresolution methods, which enable the extraction of well-defined local communities even if the global community structure is vaguely defined in an average sense. Toward this end, we propose measures analogous to variation of information and normalized mutual information that are used to quantitatively identify the best resolution(s) at the community level based on correlations between clusters in independently-solved systems. We demonstrate our method on two constructed networks as well as a real network and draw inferences about local community strength. Our approach is independent of the applied community detection algorithm save for the inherent requirement that the method be able to identify communities across different network scales, with appropriate changes to account for how different resolutions are evaluated or defined in a particular community detection method. It should, in principle, easily adapt to alternative community comparison measures.Comment: 19 pages, 11 figure

    Symbolic Time Series Analysis in Economics

    Get PDF
    In this paper I describe and apply the methods of Symbolic Time Series Analysis (STSA) to an experimental framework. The idea behind Symbolic Time Series Analysis is simple: the values of a given time series data are transformed into a finite set of symbols obtaining a finite string. Then, we can process the symbolic sequence using tools from information theory and symbolic dynamics. I discuss data symbolization as a tool for identifying temporal patterns in experimental data and use symbol sequence statistics in a model strategy. To explain these applications, I describe methods to select the symbolization of the data (Section 2), I introduce the symbolic sequence histograms and some tools to characterize and compare these histograms (Section 3). I show that the methods of symbolic time series analysis can be a good tool to describe and recognize time patterns in complex dynamical processes and to extract dynamical information about this kind of system. In particular, the method gives us a language in which to express and analyze these time patterns. In section 4 I report some applications of STSA to study the evolution of ifferent economies. In these applications data symbolization is based on economic criteria using the notion of economic regime introduced earlier in this thesis. I use STSA methods to describe the dynamical behavior of these economies and to do comparative analysis of their regime dynamics. In section 5 I use STSA to reconstruct a model of a dynamical system from measured time series data. In particular, I will show how the observed symbolic sequence statistics can be used as a target for measuring the goodness of fit of proposed models.
    • …
    corecore