2,984 research outputs found

    A QPTAS for the Base of the Number of Triangulations of a Planar Point Set

    Full text link
    The number of triangulations of a planar n point set is known to be cnc^n, where the base cc lies between 2.432.43 and 30.30. The fastest known algorithm for counting triangulations of a planar n point set runs in O∗(2n)O^*(2^n) time. The fastest known arbitrarily close approximation algorithm for the base of the number of triangulations of a planar n point set runs in time subexponential in n.n. We present the first quasi-polynomial approximation scheme for the base of the number of triangulations of a planar point set

    Trisections of a 3-rotationally symmetric planar convex body minimizing the maximum relative diameter

    Get PDF
    In this work we study the fencing problem consisting of finnding a trisection of a 3-rotationally symmetric planar convex body which minimizes the maximum relative diameter. We prove that an optimal solution is given by the so-called standard trisection. We also determine the optimal set giving the minimum value for this functional and study the corresponding universal lower bound.Comment: Preliminary version, 20 pages, 15 figure

    Approximation Schemes for Partitioning: Convex Decomposition and Surface Approximation

    Full text link
    We revisit two NP-hard geometric partitioning problems - convex decomposition and surface approximation. Building on recent developments in geometric separators, we present quasi-polynomial time algorithms for these problems with improved approximation guarantees.Comment: 21 pages, 6 figure

    Minimum Convex Partitions and Maximum Empty Polytopes

    Full text link
    Let SS be a set of nn points in Rd\mathbb{R}^d. A Steiner convex partition is a tiling of conv(S){\rm conv}(S) with empty convex bodies. For every integer dd, we show that SS admits a Steiner convex partition with at most ⌈(n−1)/d⌉\lceil (n-1)/d\rceil tiles. This bound is the best possible for points in general position in the plane, and it is best possible apart from constant factors in every fixed dimension d≥3d\geq 3. We also give the first constant-factor approximation algorithm for computing a minimum Steiner convex partition of a planar point set in general position. Establishing a tight lower bound for the maximum volume of a tile in a Steiner convex partition of any nn points in the unit cube is equivalent to a famous problem of Danzer and Rogers. It is conjectured that the volume of the largest tile is ω(1/n)\omega(1/n). Here we give a (1−ε)(1-\varepsilon)-approximation algorithm for computing the maximum volume of an empty convex body amidst nn given points in the dd-dimensional unit box [0,1]d[0,1]^d.Comment: 16 pages, 4 figures; revised write-up with some running times improve
    • …
    corecore