4,415 research outputs found

    Exploring Subexponential Parameterized Complexity of Completion Problems

    Get PDF
    Let F{\cal F} be a family of graphs. In the F{\cal F}-Completion problem, we are given a graph GG and an integer kk as input, and asked whether at most kk edges can be added to GG so that the resulting graph does not contain a graph from F{\cal F} as an induced subgraph. It appeared recently that special cases of F{\cal F}-Completion, the problem of completing into a chordal graph known as Minimum Fill-in, corresponding to the case of F={C4,C5,C6,}{\cal F}=\{C_4,C_5,C_6,\ldots\}, and the problem of completing into a split graph, i.e., the case of F={C4,2K2,C5}{\cal F}=\{C_4, 2K_2, C_5\}, are solvable in parameterized subexponential time 2O(klogk)nO(1)2^{O(\sqrt{k}\log{k})}n^{O(1)}. The exploration of this phenomenon is the main motivation for our research on F{\cal F}-Completion. In this paper we prove that completions into several well studied classes of graphs without long induced cycles also admit parameterized subexponential time algorithms by showing that: - The problem Trivially Perfect Completion is solvable in parameterized subexponential time 2O(klogk)nO(1)2^{O(\sqrt{k}\log{k})}n^{O(1)}, that is F{\cal F}-Completion for F={C4,P4}{\cal F} =\{C_4, P_4\}, a cycle and a path on four vertices. - The problems known in the literature as Pseudosplit Completion, the case where F={2K2,C4}{\cal F} = \{2K_2, C_4\}, and Threshold Completion, where F={2K2,P4,C4}{\cal F} = \{2K_2, P_4, C_4\}, are also solvable in time 2O(klogk)nO(1)2^{O(\sqrt{k}\log{k})} n^{O(1)}. We complement our algorithms for F{\cal F}-Completion with the following lower bounds: - For F={2K2}{\cal F} = \{2K_2\}, F={C4}{\cal F} = \{C_4\}, F={P4}{\cal F} = \{P_4\}, and F={2K2,P4}{\cal F} = \{2K_2, P_4\}, F{\cal F}-Completion cannot be solved in time 2o(k)nO(1)2^{o(k)} n^{O(1)} unless the Exponential Time Hypothesis (ETH) fails. Our upper and lower bounds provide a complete picture of the subexponential parameterized complexity of F{\cal F}-Completion problems for F{2K2,C4,P4}{\cal F}\subseteq\{2K_2, C_4, P_4\}.Comment: 32 pages, 16 figures, A preliminary version of this paper appeared in the proceedings of STACS'1

    Combinatorially interpreting generalized Stirling numbers

    Get PDF
    Let ww be a word in alphabet {x,D}\{x,D\} with mm xx's and nn DD's. Interpreting "xx" as multiplication by xx, and "DD" as differentiation with respect to xx, the identity wf(x)=xmnkSw(k)xkDkf(x)wf(x) = x^{m-n}\sum_k S_w(k) x^k D^k f(x), valid for any smooth function f(x)f(x), defines a sequence (Sw(k))k(S_w(k))_k, the terms of which we refer to as the {\em Stirling numbers (of the second kind)} of ww. The nomenclature comes from the fact that when w=(xD)nw=(xD)^n, we have Sw(k)={nk}S_w(k)={n \brace k}, the ordinary Stirling number of the second kind. Explicit expressions for, and identities satisfied by, the Sw(k)S_w(k) have been obtained by numerous authors, and combinatorial interpretations have been presented. Here we provide a new combinatorial interpretation that retains the spirit of the familiar interpretation of {nk}{n \brace k} as a count of partitions. Specifically, we associate to each ww a quasi-threshold graph GwG_w, and we show that Sw(k)S_w(k) enumerates partitions of the vertex set of GwG_w into classes that do not span an edge of GwG_w. We also discuss some relatives of, and consequences of, our interpretation, including qq-analogs and bijections between families of labelled forests and sets of restricted partitions.Comment: To appear in Eur. J. Combin., doi:10.1016/j.ejc.2014.07.00
    corecore