401 research outputs found

    Enumeration of three term arithmetic progressions in fixed density sets

    Full text link
    Additive combinatorics is built around the famous theorem by Szemer\'edi which asserts existence of arithmetic progressions of any length among the integers. There exist several different proofs of the theorem based on very different techniques. Szemer\'edi's theorem is an existence statement, whereas the ultimate goal in combinatorics is always to make enumeration statements. In this article we develop new methods based on real algebraic geometry to obtain several quantitative statements on the number of arithmetic progressions in fixed density sets. We further discuss the possibility of a generalization of Szemer\'edi's theorem using methods from real algebraic geometry.Comment: 62 pages. Update v2: Corrected some references. Update v3: Incorporated feedbac

    Combinatorial and Additive Number Theory Problem Sessions: '09--'19

    Full text link
    These notes are a summary of the problem session discussions at various CANT (Combinatorial and Additive Number Theory Conferences). Currently they include all years from 2009 through 2019 (inclusive); the goal is to supplement this file each year. These additions will include the problem session notes from that year, and occasionally discussions on progress on previous problems. If you are interested in pursuing any of these problems and want additional information as to progress, please email the author. See http://www.theoryofnumbers.com/ for the conference homepage.Comment: Version 3.4, 58 pages, 2 figures added 2019 problems on 5/31/2019, fixed a few issues from some presenters 6/29/201

    New Lower Bounds for van der Waerden Numbers Using Distributed Computing

    Full text link
    This paper provides new lower bounds for van der Waerden numbers. The number W(k,r)W(k,r) is defined to be the smallest integer nn for which any rr-coloring of the integers 0,n10 \ldots, n-1 admits monochromatic arithmetic progression of length kk; its existence is implied by van der Waerden's Theorem. We exhibit rr-colorings of 0n10\ldots n-1 that do not contain monochromatic arithmetic progressions of length kk to prove that W(k,r)>nW(k, r)>n. These colorings are constructed using existing techniques. Rabung's method, given a prime pp and a primitive root ρ\rho, applies a color given by the discrete logarithm base ρ\rho mod rr and concatenates k1k-1 copies. We also used Herwig et al's Cyclic Zipper Method, which doubles or quadruples the length of a coloring, with the faster check of Rabung and Lotts. We were able to check larger primes than previous results, employing around 2 teraflops of computing power for 12 months through distributed computing by over 500 volunteers. This allowed us to check all primes through 950 million, compared to 10 million by Rabung and Lotts. Our lower bounds appear to grow roughly exponentially in kk. Given that these constructions produce tight lower bounds for known van der Waerden numbers, this data suggests that exact van der Waerden Numbers grow exponentially in kk with ratio rr asymptotically, which is a new conjecture, according to Graham.Comment: 8 pages, 1 figure. This version reflects new results and reader comment

    On Sums of Sets of Primes with Positive Relative Density

    Full text link
    In this paper we show that if AA is a subset of the primes with positive relative density δ\delta, then A+AA+A must have positive upper density C1δeC2(log(1/δ))2/3(loglog(1/δ))1/3C_1\delta e^{-C_2(\log(1/\delta))^{2/3}(\log\log(1/\delta))^{1/3}} in N\mathbb{N}. Our argument applies the techniques developed by Green and Green-Tao used to find arithmetic progressions in the primes, in combination with a result on sums of subsets of the multiplicative subgroup of the integers modulo MM.Comment: 21 pages, to appear in J. London Math. Soc., short remark added and typos fixe
    corecore