28,221 research outputs found

    Characterizing block graphs in terms of their vertex-induced partitions

    Get PDF
    Block graphs are a generalization of trees that arise in areas such as metric graph theory, molecular graphs, and phylogenetics. Given a finite connected simple graph G=(V,E)G=(V,E) with vertex set VV and edge set E(V2)E\subseteq \binom{V}{2}, we will show that the (necessarily unique) smallest block graph with vertex set VV whose edge set contains EE is uniquely determined by the VV-indexed family \Pp_G =\big(\pi_v)_{v \in V} of the partitions πv\pi_v of the set VV into the set of connected components of the graph (V,{eE:ve})(V,\{e\in E: v\notin e\}). Moreover, we show that an arbitrary VV-indexed family \Pp=(\p_v)_{v \in V} of partitions \p_v of the set VV is of the form \Pp=\Pp_G for some connected simple graph G=(V,E)G=(V,E) with vertex set VV as above if and only if, for any two distinct elements u,vVu,v\in V, the union of the set in \p_v that contains uu and the set in \p_u that contains vv coincides with the set VV, and \{v\}\in \p_v holds for all vVv \in V. As well as being of inherent interest to the theory of block graphs,these facts are also useful in the analysis of compatible decompositions of finite metric spaces

    Layout of Graphs with Bounded Tree-Width

    Full text link
    A \emph{queue layout} of a graph consists of a total order of the vertices, and a partition of the edges into \emph{queues}, such that no two edges in the same queue are nested. The minimum number of queues in a queue layout of a graph is its \emph{queue-number}. A \emph{three-dimensional (straight-line grid) drawing} of a graph represents the vertices by points in Z3\mathbb{Z}^3 and the edges by non-crossing line-segments. This paper contributes three main results: (1) It is proved that the minimum volume of a certain type of three-dimensional drawing of a graph GG is closely related to the queue-number of GG. In particular, if GG is an nn-vertex member of a proper minor-closed family of graphs (such as a planar graph), then GG has a O(1)×O(1)×O(n)O(1)\times O(1)\times O(n) drawing if and only if GG has O(1) queue-number. (2) It is proved that queue-number is bounded by tree-width, thus resolving an open problem due to Ganley and Heath (2001), and disproving a conjecture of Pemmaraju (1992). This result provides renewed hope for the positive resolution of a number of open problems in the theory of queue layouts. (3) It is proved that graphs of bounded tree-width have three-dimensional drawings with O(n) volume. This is the most general family of graphs known to admit three-dimensional drawings with O(n) volume. The proofs depend upon our results regarding \emph{track layouts} and \emph{tree-partitions} of graphs, which may be of independent interest.Comment: This is a revised version of a journal paper submitted in October 2002. This paper incorporates the following conference papers: (1) Dujmovic', Morin & Wood. Path-width and three-dimensional straight-line grid drawings of graphs (GD'02), LNCS 2528:42-53, Springer, 2002. (2) Wood. Queue layouts, tree-width, and three-dimensional graph drawing (FSTTCS'02), LNCS 2556:348--359, Springer, 2002. (3) Dujmovic' & Wood. Tree-partitions of kk-trees with applications in graph layout (WG '03), LNCS 2880:205-217, 200
    corecore