362 research outputs found

    Partitions of graphs into cographs

    Get PDF
    AbstractCographs form the minimal family of graphs containing K1 that is closed with respect to complementation and disjoint union. We discuss vertex partitions of graphs into the smallest number of cographs. We introduce a new parameter, calling the minimum order of such a partition the c-chromatic number of the graph. We begin by axiomatizing several well-known graphical parameters as motivation for this function. We present several bounds on c-chromatic number in terms of well-known expressions. We show that if a graph is triangle-free, then its chromatic number is bounded between the c-chromatic number and twice this number. We show that both bounds are sharp for graphs with arbitrarily high girth. This provides an alternative proof to a result by Broere and Mynhardt; namely, there exist triangle-free graphs with arbitrarily large c-chromatic numbers. We show that any planar graph with girth at least 11 has a c-chromatic number at most two. We close with several remarks on computational complexity. In particular, we show that computing the c-chromatic number is NP-complete for planar graphs

    On Symbolic Ultrametrics, Cotree Representations, and Cograph Edge Decompositions and Partitions

    Full text link
    Symbolic ultrametrics define edge-colored complete graphs K_n and yield a simple tree representation of K_n. We discuss, under which conditions this idea can be generalized to find a symbolic ultrametric that, in addition, distinguishes between edges and non-edges of arbitrary graphs G=(V,E) and thus, yielding a simple tree representation of G. We prove that such a symbolic ultrametric can only be defined for G if and only if G is a so-called cograph. A cograph is uniquely determined by a so-called cotree. As not all graphs are cographs, we ask, furthermore, what is the minimum number of cotrees needed to represent the topology of G. The latter problem is equivalent to find an optimal cograph edge k-decomposition {E_1,...,E_k} of E so that each subgraph (V,E_i) of G is a cograph. An upper bound for the integer k is derived and it is shown that determining whether a graph has a cograph 2-decomposition, resp., 2-partition is NP-complete

    On retracts, absolute retracts, and folds in cographs

    Full text link
    Let G and H be two cographs. We show that the problem to determine whether H is a retract of G is NP-complete. We show that this problem is fixed-parameter tractable when parameterized by the size of H. When restricted to the class of threshold graphs or to the class of trivially perfect graphs, the problem becomes tractable in polynomial time. The problem is also soluble when one cograph is given as an induced subgraph of the other. We characterize absolute retracts of cographs.Comment: 15 page

    A survey on algorithmic aspects of modular decomposition

    Full text link
    The modular decomposition is a technique that applies but is not restricted to graphs. The notion of module naturally appears in the proofs of many graph theoretical theorems. Computing the modular decomposition tree is an important preprocessing step to solve a large number of combinatorial optimization problems. Since the first polynomial time algorithm in the early 70's, the algorithmic of the modular decomposition has known an important development. This paper survey the ideas and techniques that arose from this line of research
    • …
    corecore