31,648 research outputs found

    Stochastic Dynamic Cache Partitioning for Encrypted Content Delivery

    Full text link
    In-network caching is an appealing solution to cope with the increasing bandwidth demand of video, audio and data transfer over the Internet. Nonetheless, an increasing share of content delivery services adopt encryption through HTTPS, which is not compatible with traditional ISP-managed approaches like transparent and proxy caching. This raises the need for solutions involving both Internet Service Providers (ISP) and Content Providers (CP): by design, the solution should preserve business-critical CP information (e.g., content popularity, user preferences) on the one hand, while allowing for a deeper integration of caches in the ISP architecture (e.g., in 5G femto-cells) on the other hand. In this paper we address this issue by considering a content-oblivious ISP-operated cache. The ISP allocates the cache storage to various content providers so as to maximize the bandwidth savings provided by the cache: the main novelty lies in the fact that, to protect business-critical information, ISPs only need to measure the aggregated miss rates of the individual CPs and do not need to be aware of the objects that are requested, as in classic caching. We propose a cache allocation algorithm based on a perturbed stochastic subgradient method, and prove that the algorithm converges close to the allocation that maximizes the overall cache hit rate. We use extensive simulations to validate the algorithm and to assess its convergence rate under stationary and non-stationary content popularity. Our results (i) testify the feasibility of content-oblivious caches and (ii) show that the proposed algorithm can achieve within 10\% from the global optimum in our evaluation

    A General Optimization Technique for High Quality Community Detection in Complex Networks

    Get PDF
    Recent years have witnessed the development of a large body of algorithms for community detection in complex networks. Most of them are based upon the optimization of objective functions, among which modularity is the most common, though a number of alternatives have been suggested in the scientific literature. We present here an effective general search strategy for the optimization of various objective functions for community detection purposes. When applied to modularity, on both real-world and synthetic networks, our search strategy substantially outperforms the best existing algorithms in terms of final scores of the objective function; for description length, its performance is on par with the original Infomap algorithm. The execution time of our algorithm is on par with non-greedy alternatives present in literature, and networks of up to 10,000 nodes can be analyzed in time spans ranging from minutes to a few hours on average workstations, making our approach readily applicable to tasks which require the quality of partitioning to be as high as possible, and are not limited by strict time constraints. Finally, based on the most effective of the available optimization techniques, we compare the performance of modularity and code length as objective functions, in terms of the quality of the partitions one can achieve by optimizing them. To this end, we evaluated the ability of each objective function to reconstruct the underlying structure of a large set of synthetic and real-world networks.Comment: MAIN text: 14 pages, 4 figures, 1 table Supplementary information: 19 pages, 8 figures, 5 table

    Jump-Diffusion Approximation of Stochastic Reaction Dynamics: Error bounds and Algorithms

    Full text link
    Biochemical reactions can happen on different time scales and also the abundance of species in these reactions can be very different from each other. Classical approaches, such as deterministic or stochastic approach, fail to account for or to exploit this multi-scale nature, respectively. In this paper, we propose a jump-diffusion approximation for multi-scale Markov jump processes that couples the two modeling approaches. An error bound of the proposed approximation is derived and used to partition the reactions into fast and slow sets, where the fast set is simulated by a stochastic differential equation and the slow set is modeled by a discrete chain. The error bound leads to a very efficient dynamic partitioning algorithm which has been implemented for several multi-scale reaction systems. The gain in computational efficiency is illustrated by a realistically sized model of a signal transduction cascade coupled to a gene expression dynamics.Comment: 32 pages, 7 figure

    Asynchronous Optimization Methods for Efficient Training of Deep Neural Networks with Guarantees

    Full text link
    Asynchronous distributed algorithms are a popular way to reduce synchronization costs in large-scale optimization, and in particular for neural network training. However, for nonsmooth and nonconvex objectives, few convergence guarantees exist beyond cases where closed-form proximal operator solutions are available. As most popular contemporary deep neural networks lead to nonsmooth and nonconvex objectives, there is now a pressing need for such convergence guarantees. In this paper, we analyze for the first time the convergence of stochastic asynchronous optimization for this general class of objectives. In particular, we focus on stochastic subgradient methods allowing for block variable partitioning, where the shared-memory-based model is asynchronously updated by concurrent processes. To this end, we first introduce a probabilistic model which captures key features of real asynchronous scheduling between concurrent processes; under this model, we establish convergence with probability one to an invariant set for stochastic subgradient methods with momentum. From the practical perspective, one issue with the family of methods we consider is that it is not efficiently supported by machine learning frameworks, as they mostly focus on distributed data-parallel strategies. To address this, we propose a new implementation strategy for shared-memory based training of deep neural networks, whereby concurrent parameter servers are utilized to train a partitioned but shared model in single- and multi-GPU settings. Based on this implementation, we achieve on average 1.2x speed-up in comparison to state-of-the-art training methods for popular image classification tasks without compromising accuracy

    Stochastic Training of Neural Networks via Successive Convex Approximations

    Full text link
    This paper proposes a new family of algorithms for training neural networks (NNs). These are based on recent developments in the field of non-convex optimization, going under the general name of successive convex approximation (SCA) techniques. The basic idea is to iteratively replace the original (non-convex, highly dimensional) learning problem with a sequence of (strongly convex) approximations, which are both accurate and simple to optimize. Differently from similar ideas (e.g., quasi-Newton algorithms), the approximations can be constructed using only first-order information of the neural network function, in a stochastic fashion, while exploiting the overall structure of the learning problem for a faster convergence. We discuss several use cases, based on different choices for the loss function (e.g., squared loss and cross-entropy loss), and for the regularization of the NN's weights. We experiment on several medium-sized benchmark problems, and on a large-scale dataset involving simulated physical data. The results show how the algorithm outperforms state-of-the-art techniques, providing faster convergence to a better minimum. Additionally, we show how the algorithm can be easily parallelized over multiple computational units without hindering its performance. In particular, each computational unit can optimize a tailored surrogate function defined on a randomly assigned subset of the input variables, whose dimension can be selected depending entirely on the available computational power.Comment: Preprint submitted to IEEE Transactions on Neural Networks and Learning System
    • …
    corecore